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ABSTRACT 
 
 
 
The concept of simultaneous analysis and design (SAND) is revisited with two 

objectives in mind: (i) to propose and evaluate alternative formulations for various 

structural and mechanical system optimization problems, and (ii) to study implementation 

aspects of the formulations. SAND formulates the optimization problem in a mixed space 

of design variables and behavior variables, to imbed the state equations in one single 

optimization framework. Therefore explicit analysis and design sensitivity analysis of the 

system are not needed.  

Several alternative formulations for structural design optimization based on the 

SAND concept are defined using displacements, and forces or stresses as optimization 

variables. As sample application areas, optimal design of trusses and frames are 

considered. Existing analysis software is integrated with an optimizer to solve example 

problems. Only the pre- and post-processing capabilities of the analysis software are 

needed to evaluate the problem functions. In addition, at least one of the alternative 

formulations does not even require assembly of the global stiffness matrix for the 

structure.  

Alternative formulations for transient dynamic response optimization and digital 

human motion simulation are also presented, analyzed and evaluated. Similar to the 

SAND approach used for optimization of structures subjected to static loads, the 

equations of motion are not integrated explicitly; they can be imposed as equality 

constraints in these formulations.  

For the alternative formulations, the optimization problem is quite large in terms 
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of the numbers of variables and constraints. However, the problem functions are quite 

sparse, which is exploited in the optimization process. Performance of various 

formulations is evaluated with extensive numerical experiments and their advantages and 

disadvantages are discussed. It is concluded that the alternative SAND-type formulations 

are more efficient compared to the conventional approach where gradients of implicit 

functions must be evaluated. In addition, they offer flexibility and ease of numerical 

implementation because linear systems of equations are not solved for analysis or design 

sensitivity analysis.  

The alternative formulations represent a fundamental shift in the way analysis and 

design optimization are currently treated. This shift in paradigm needs to be further 

nurtured and developed for optimization of more complex multidisciplinary systems.  
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ABSTRACT 
 
 
 

The concept of simultaneous analysis and design (SAND) is revisited with two 

objectives in mind: (i) to propose and evaluate alternative formulations for various 

structural and mechanical system optimization problems, and (ii) to study implementation 

aspects of the formulations. SAND formulates the optimization problem in a mixed space 

of design variables and behavior variables, to imbed the state equations in one single 

optimization framework. Therefore explicit analysis and design sensitivity analysis of the 

system are not needed.  

Several alternative formulations for structural design optimization based on the 

SAND concept are defined using displacements, and forces or stresses as optimization 

variables. As sample application areas, optimal design of trusses and frames are 

considered. Existing analysis software is integrated with an optimizer to solve example 

problems. Only the pre- and post-processing capabilities of the analysis software are 

needed to evaluate the problem functions. In addition, at least one of the alternative 

formulations does not even require assembly of the global stiffness matrix for the 

structure.  

Alternative formulations for transient dynamic response optimization and digital 

human motion simulation are also presented, analyzed and evaluated. Similar to the 

SAND approach used for optimization of structures subjected to static loads, the 

equations of motion are not integrated explicitly; they can be imposed as equality 

constraints in these formulations.  

For the alternative formulations, the optimization problem is quite large in terms 
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of the numbers of variables and constraints. However, the problem functions are quite 

sparse, which is exploited in the optimization process. Performance of various 

formulations is evaluated with extensive numerical experiments and their advantages and 

disadvantages are discussed. It is concluded that the alternative SAND-type formulations 

are more efficient compared to the conventional approach where gradients of implicit 

functions must be evaluated. In addition, they offer flexibility and ease of numerical 

implementation because linear systems of equations are not solved for analysis or design 

sensitivity analysis.  

The alternative formulations represent a fundamental shift in the way analysis and 

design optimization are currently treated. This shift in paradigm needs to be further 

nurtured and developed for optimization of more complex multidisciplinary systems.  
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CHAPTER 1 
INTRODUCTION 

 
 
 

1.1  Introduction and Motivation 

Since 1960s, various formulations for optimization of problems in many diverse 

fields, such as structural, chemical, industrial and mechanical engineering, economics, 

optimal control and others have been developed and discussed in the literature. These 

formulations have been reviewed with the objective of possible cross fertilization of ideas 

that can lead to better approaches for optimization of complex systems (Arora and Wang 

2005). 

The most common approach for structural optimization and optimal control 

problems has been the one where only the design variables are treated as optimization 

variables. This is the conventional formulation (also called nested analysis and design, 

NAND) where only the design variables are treated as the independent optimization 

variables. All other response quantities, such as displacements, stresses, and internal 

forces in a structure are treated as implicit functions of the design variables. These 

response quantities are also called dependent variables. Therefore, in the optimization 

process, analysis is performed to obtain the response variables and to evaluate functions, 

and hence a nested process of analysis-optimization is set up naturally for design 

synthesis. However, this optimization formulation method is difficult to use for design of 

practical structural and mechanical systems. There are three main reasons for this 

difficulty: 

1. Many practical applications are complex requiring interaction between several 
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disciplines; i.e., require use of different analysis software components that are 

discipline-specific. Since they are independent programs, they are impossible 

to integrate into the current design optimization environment. 

2. The current methods of optimization require design sensitivity analysis which 

can be implemented into analysis software but only with substantial effort and 

resources. Any addition for new capability to the analysis software requires 

updating of the design sensitivity analysis part as well. Thus it is difficult to 

take advantage of advances in the analysis methods. 

3. Many practical problems are nonlinear and involve transient dynamic loads 

making it even more difficult to implement and use the existing optimization 

formulations and methods. 

The main difficulty with the existing formulations noted in (2) is that the response 

quantities, called the behavior/state variables, are treated as implicit functions of the 

design variables. Derivatives of state variables with respect to the design variables are 

needed in the conventional approaches for design optimization. This is known as design 

sensitivity analysis. Although a considerable body of literature is available on design 

sensitivity analysis of different classes of problems (Haug et al. 1986; Arora 1995), its 

implementation into analysis software is quite difficult, especially for multidisciplinary 

problems requiring use of different discipline-specific analysis software.  

Note also that the conventional formulation requires iterations where design 

changes are made and the structure is re-analyzed for its response. An evaluation of any 

design change requires simulation of the system, the process can be quite tedious and 

time-consuming. To alleviate some of the difficulties noted above, several different 
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research avenues have been explored in the literature. First, efficient structural reanalysis 

methods for analyzing a modified structure have been developed (Kirsch 2000; Kirsch 

and Papalambros 2001; Kirsch 2002). These methods can be useful for efficient analysis 

of updated designs and for calculation of the design derivatives during the optimization 

process. Second, various methods to develop approximate models, the so-called meta-

models, such as the response surface approximations, have been proposed and evaluated 

for optimization of complex structural and mechanical systems (Myers and Montgomery 

2002; Krishnamurthy 2003). Third, some alternative formulations have also been 

proposed and evaluated for optimization of structural and mechanical systems. 

Optimization methods have been developed such that there is no need for analysis and 

design sensitivity analysis to optimize systems. This way the algorithms for analysis of 

systems and algorithms for design optimization of systems are somewhat uncoupled. One 

such formulation is called simultaneous analysis and design (SAND) formulation. By 

formulating the optimization problem in a mixed space of design variables and 

behavior/state variables, the analysis equations are imbedded as equality constraints in 

one single optimization problem, therefore no explicit analysis is needed. 

1.2  Objectives of Research 

The major objectives of this research are listed as follows: 

1. To propose and develop different alternative formulations for structural and 

mechanical systems subjected to static and dynamic loads.  

2. To develop computer-based automatic optimization programs for the 

optimization of different structural and mechanical systems. The sparse 

structure of the alternative formulations will be used for numerical 
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implementation. Existing programs will be used and their role in the 

alternative formulations will be evaluated. 

3. To evaluate the proposed alternative formulations and compare their 

performance with the conventional formulation by solving various example 

problems. 

In this research, the SAND idea is utilized and various alternative formulations 

are developed and evaluated for optimization of different structural and transient dynamic 

response optimization problems. Various behavior variables, such as nodal 

displacements, forces and stresses in a structure, and generalized displacements, 

velocities and accelerations in a dynamic system are treated as independent variables in 

the optimization process. Therefore the system governing equations are treated as 

equality constraints in the optimization formulation. The optimization constraints can be 

expressed explicitly in terms of the optimization variables. The resulting optimization 

problems are solved using powerful nonlinear programming (NLP) methods. Numerical 

examples are needed to explore the applicability of this proposed optimal design 

procedure, and their solutions are compared to those available in the literature. The 

advantages and disadvantages of different optimization formulations are also discussed.  

The challenges and difficulties include the integration of existing analysis 

software with explicit optimization formulations, and the numerical implementation of 

alternative formulations for large-scale optimization problems, such as the treatment of 

sparse matrices and various variables with different orders of magnitude. Even if design 

variable linking technique can be applied, the size of the optimization problem, i.e., the 

numbers of variables and constraints, can still be very large. However, this research will 
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shed light on the optimization of other optimization problems and potential for practical 

applications of the alternative formulations. 

1.3  Overview of the Dissertation 

In Chapter 2, alternative formulations for optimization and simulation of 

structural and mechanical systems, and other related fields are reviewed. Mathematical 

programs with equilibrium constraints (MPECs), partial differential equations (PDE) –

constrained optimization, and optimal control are all surveyed. The conventional 

formulation and a general framework for alternative formulations for structural and 

mechanical system optimization, and optimal control problems are described in Chapter 

3. Advantages and disadvantages of these formulations are described. Three alternative 

formulations for sizing optimization of elastic trusses are studied and evaluated in 

Chapter 4. Several numerical examples from the literature are solved and their solutions 

are compared. In Chapter 5, optimal design of framed structures is considered. Two 

alternative formulations are proposed and several example problems are solved and 

solutions compared with those available in the literature. In Chapter 6, some large-scale 

structural design examples and their numerical results are presented. The sparsity features 

of different formulations are discussed and a powerful sparse SQP solver is used as an 

optimizer. In Chapters 7 and 8, alternative formulations for transient dynamic response 

optimization are proposed and evaluated. These formulations are based on different 

discretization techniques of first and second order differential equations (DEs). Digital 

human dynamic motion prediction problems are considered in Chapter 9. These are 

essentially optimal control problems that are solved by numerical optimization 

techniques. Various alternative formulations are developed and discussed. A lower body 
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gait model is used as an example. Chapter 10 includes discussion, conclusions, and some 

future research topics. 
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CHAPTER 2 
REVIEW OF LITERATURE 

 
 
 

2.1  Introduction 

In the structural optimization literature, three basically different formulations for 

optimum design have been presented. The first one is called the conventional formulation 

where only the structural design variables are treated as the optimization variables. This 

is also called the nested analysis and design (NAND) approach. The second set of 

formulations is known as the simultaneous analysis and design (SAND) approach. In 

these formulations, some of the state variables, such as the displacements, are also treated 

as optimization variables in addition to the traditional design variables. The governing 

equilibrium equations are treated as equality constraints. The third formulation is known 

as the displacement based two-phase approach where the displacements are treated as 

optimization variables in the outer loop and the design variables as the unknowns in the 

inner loop. 

Parallel developments of SAND-type optimization formulations and their 

solutions strategies have also taken place in other fields since 1970s. A general class of 

formulations known as mathematical programs with equilibrium constraints, or in short 

MPECs, has been developed and studied. The word “equilibrium” in MPEC refers to the 

variational equalities or inequalities that model the equilibrium phenomenon in 

engineering and other applications. Another class of formulations that has been presented 

and analyzed recently is known as the partial differential equations (PDE)-constrained 

optimization. In these formulations, the equilibrium equations are expressed in a 
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continuum form, the PDEs. In addition to these literatures, SAND-type approaches have 

been used to solve optimal control and multidisciplinary design optimization (MDO) 

problems. We shall present an overview of these literatures. 

A thorough review of various formulations for optimization of structural and 

mechanical systems has been presented by in Kirsch and Rozvany (1994), and Wang and 

Arora (2005). In the paper by Kirsch and Rozvany (1994), several alternative but 

equivalent formulations for structural optimization problems were presented based on 

different independent variables, analysis methods and forms of resulting constraints. 

These included design variable space (conventional), SAND, optimality criteria (OC), 

and some simplified SAND formulations. Details of the formulations were discussed for 

truss-type structures. A more recent review by Arora and Wang (2005) covers various 

SAND formulations for sizing, shape, topology and multidisciplinary applications as well 

as displacement-based formulations, MPEC, PDE-constrained optimization, optimal 

control, as well as MDO problems. Objective of this chapter is to review the current 

literature on alternative formulations for optimization of structural and mechanical 

systems. These formulations may offer some clues on how best to formulate the problem 

with the consideration of practical applications. Some of the stochastic methods that do 

not require gradients in their calculations are not considered here for presentation. 

2.2  Simultaneous Analysis and Design (SAND)  

If all design variables and response variables are combined together in a single 

optimization problem, such that no explicit analysis is needed, then the approach is 

usually called the simultaneous analysis and design (SAND) formulation. Some of the 

earliest attempts to include state variables in the structural optimization problem were by 
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Schmit and Fox (1965) and Fuchs (1982, 1983). Explicit expressions for the objective 

function and the constraints could be obtained. A SAND formulation based on an 

element-by-element preconditioned conjugate gradient technique was proposed by Haftka 

(1985), and Haftka and Kamat (1989). Shin et al. (1988) considered the simultaneous 

analysis and design approach to solve the problem with eigenvalue constraints. Ringertz 

(1989, 1992, 1995) presented SAND methods for the optimal design of nonlinear 

structures. The SAND formulations usually include large numbers of variables and 

constraints. However, the matrix sparsity in the constraint Jacobian can be exploited and 

utilized for numerical efficiency (Orozco and Ghattas 1992a, Ringertz 1995). Orozco and 

Ghattas (1997) also developed a reduced SQP method to optimize geometrically 

nonlinear truss structures. 

In recent years, various SAND formulations have been successfully applied to the 

configuration and topology design of structures (Bendsøe and Sigmund 2003). It is well-

known that a crucial step for success of the SAND formulations is the solution of very 

large scale optimization problems. Therefore considerable focus has been put on the 

development of new algorithms to solve large-scale optimization problems (Ben-Tal and 

Bendsøe 1993; Ringertz 1995; Ben-Tal and Roth 1996; Ben-Tal and Nemirovski 1997; 

Orozco and Ghattas 1997; Jarre et al. 1998; Maar and Schulz 2000; Ben-Tal et al. 2000; 

Herskovits et al. 2001; Hoppe et al. 2002; and others).  

2.3  Displacement-Based Optimization (DBO)  

Another alternative approach of optimum structural design is the so-called 

displacement based two-phase procedure. The design variables and response variables 

can be combined together to form in a multi-phase optimization problem, such that no 
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analysis is needed. In a paper by Missoum and Gürdal (2002), the two-phase optimization 

procedure of McKeown (1977, 1989, 1998) was presented and applied to optimize 

trusses. The formulation solved the problem in two phases, the inner and outer problems. 

In the inner problem, the cost was minimized subject to satisfaction of the equilibrium 

equations. The displacement field was specified and the design variables were the 

independent variables. In the outer problem, the displacements were determined to 

minimize the cost function subject to the stress and displacement constraints. That work 

has also been extended to nonlinear problems (Gu et al. 2002; Missoum et al. 2002a,b). 

Limitations of the method are that the cost function is an implicit function of the 

displacements in the outer problem, and some times it is nondifferentiable. 

2.4  Mathematical Programs with Equilibrium 

Constraints (MPEC)   

It turns out that the SAND-type formulations have also been discussed in other 

fields since 1970s. These are known as mathematical programs with equilibrium 

constraints, or in short MPECs. An MPEC is an optimization problem having primary 

constraints that are expressed as a parametric variational inequality or a complementarity 

system. The MPECs can also be viewed as a generalization of the so-called bilevel 

programs, also known as mathematical programs with optimization constraints. The basic 

idea of MPEC was introduced in the operations research literature in the early 1970s by 

Bracken and McGill (1973). These ideas can also be traced back the economic problem 

of Stackelberg game (Stackelberg 1952). The MPEC has evolved as a major research 

field in recent years and has been put on a firm mathematical foundation (Lou et al. 1996; 

Outrata et al. 1998). The MPEC formulation covers many diverse applications, such as 



www.manaraa.com

 11

economics, chemical engineering, and many more. As a particular example, structural 

analysis and design problems in unilateral frictional contact have been discussed with the 

MPEC formulation (Hilding et al. 1999). 

2.5  Partial Differential Equations (PDE) – Constrained 

Optimization   

Other developments of optimization formulations and their solutions strategies 

have also taken place recently. These are known as PDE-constrained optimization 

problems (Hoppe et al. 2002; Biegler et al. 2003; Schulz 2004). Most simulation 

problems in engineering fields involve solutions of partial differential equations. 

Therefore, following the SAND concept, the simulation variables can also be treated as 

optimization variables and the PDEs as equality constraints. Many times the PDEs are 

obtained as a result of some variational principle to model an equilibrium phenomenon. 

Therefore, PDE-constrained optimization can be viewed as a special case of the MPEC. 

2.6  Optimal Control 

Several viable approaches have been used to solve open-loop numerical optimal 

control problems (Betts 1998; Hull 2003). These problems involve the integration of 

differential algebraic equations (DAEs), or just differential equations (DEs). If the design 

variables together with the state variables and control variables are all treated as 

optimization variables, the approach is called the direct collocation/transcription method 

(Hargraves and Paris 1987). If the control variables are eliminated from the system (i.e., 

only the design variables and the state variables are treated as optimization variables), it 

is called the differential inclusion method (Seywald 1994). If the state variables are 

eliminated, it is called state variable elimination method (Hull 2003). Another possibility 
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is the so-called multiple shooting technique (Betts and Huffman 1991; Leineweber et al. 

2003). 

The basic idea of the SAND-type approach (direct collocation) is to discretize the 

system of first order differential equations, and define a finite dimensional 

approximations or parametric representation for the state and control variables. The 

discretized state equations are treated as equality constraints in the optimization process, 

converting the optimal control problem into an NLP problem, which is solved 

numerically. This has been used to solve open-loop optimal control problems for 

trajectory design in aerospace engineering (Enright and Conway 1991; Betts 2000), 

chemical process engineering (Cuthrell and Biegler 1986; Biegler 1998), and robotics or 

human motion planning (Kaplan and Heegaard 2002; Bottasso and Croce 2004). 

2.7  Multidisciplinary Design Optimization (MDO)   

Other applications of SAND can be found in heat transfer (Hrymak et al. 1985) 

and aerodynamics (Shubin 1995; Frank and Shubin 1992; Orozco and Ghattas 1992b, 

1996). There is also a growing interest in its use to formulate multidisciplinary design 

optimization (MDO) (Haftka et al. 1992; Cramer et al. 1994; Shubin 1995; Balling and 

Sobieszczanski-Sobieski 1996; Balling and Wilkinson 1997). The formulation has also 

been called the all-at-once (AAO) or infeasible path (IP) approach in the literature 

(Cramer et al. 1994; Shubin 1995; Frank and Shubin 1992; Orozco and Ghattas 1996). 

2.8  Discussion 

Alternative formulations for optimization of structural and mechanical systems, 

and other fields are surveyed. These include simultaneous analysis and design (SAND), 

displacement based two-phase approach, mathematical programs with equilibrium 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSobieszczanski-Sobieski%2C+J.%7d&section1=AU&database=1&startYear=1969&endYear=2004&yearselect=yearrange
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constraints (MPEC), and partial differential equations (PDE)-constrained formulations. In 

addition to the foregoing literature, SAND-type formulations for the optimal control 

problem and multidisciplinary optimization problems are briefly reviewed. Based on this 

review of the literature, the current status and future opportunities for research on 

alternative formulations for optimization of structural and mechanical systems are as 

follows: 

1. Most of the formulations in the structural optimization literature have been 

discussed for truss structures; they need to be extended to other complex 

structures. 

2. Most of the formulations have focused on use of the displacement based FEM. 

Other analysis methods need to be considered, such as the force methods, 

mixed methods, meshless methods, boundary element methods, and others. 

3. Implementation aspects with the existing analysis programs have not been 

adequately discussed; this important aspect needs to be addressed (Biegler et 

al. 2003; Wang and Arora 2005a). 

4. Sparse matrix approaches must be used to solve the problem with the SAND 

formulation since the optimization problem is large but sparsely populated. 

5. Transformation of the solution variables needs to be considered, since various 

variables can be of different orders of magnitude. 

6. Dynamic problems need to be considered to investigate applicability of the 

formulations for such problems. 

7. Parallel processing must be considered to solve very large-scale problems. 
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CHAPTER 3 
OPTIMIZATION FORMULATIONS 

 
 
 

3.1  Introduction 

The basic structural and mechanical system optimization problem includes 

optimal system design and optimal control. It is to determine design parameters, such as 

material properties, sizing/shape/topology variables, or/and control histories of a 

structural or mechanical system, to achieve a certain goal, e.g., minimization of cost or 

performance indices, while satisfying certain performance requirements.  

In this chapter, the conventional formulation and a general framework for 

alternative formulations are presented and discussed for structural and mechanical system 

optimization problems. This is done by considering a linear structural problem (small 

displacements and linearly elastic material model) in the discretized form. The approach 

can also be described using a continuum form of the analysis equations that is more 

general because it is not tied to any particular discretization. However, this will not be 

done here to keep presentation of the basic ideas clear and straightforward. In the 

remaining chapters, the framework for alternative formulations is implemented to 

different structural and mechanical system optimization problems and numerical results 

are presented. 

3.2  General Optimization Problems 

The structural and mechanical system optimization problem is to find design 

variable vector , representing sizing/shape/topology and other system properties, to 

minimize a cost function   

x
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( )xff =  (3.2.1) 

which may be the cost of the system, or any other function. Performance requirements are 

imposed mostly as inequality constraints (although equality constraints can also be 

treated routinely) as,  

( ) 0xg ≤  (3.2.2) 

Note that if optimal control problems are considered, the design variable vector  

also includes control force variables, which are time histories in a transient dynamic 

system (Hull 1997, 2003). For simplicity of presentation, it is assumed that  includes all 

the design variables for optimal design problems, and design and control variables for 

optimal control problems. Therefore these two types of problems can be expressed and 

presented in the same way. 

x

x

In structural and mechanical engineering, an important problem is to determine 

the response of the system to given inputs, such as displacement, deformation and 

eigenvalues. However, these values need to satisfy certain requirements, to make sure a 

system is safe and serviceable. Note here the inequality constraints may include the 

following stress and displacement constraints, and explicit bounds on the design 

variables, as 

UL σσσ ≤≤  (3.2.3) 

UL rrr ≤≤  (3.2.4) 

UL xxx ≤≤  (3.2.5) 

where 
LLL x,r,σ  and  are the lower and upper bounds for the member UUU x,r,σ
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stresses, nodal displacements and design variables, respectively. If the structural and 

mechanical system is a transient dynamic system, the constraints in Eqs. (3.2.3) and 

(3.2.4) are time-dependent, i.e., they are functions of time. 

3.3  Conventional Formulation – Only Design Variables 

as Optimization Variables  

As mentioned in Chapter 2, the conventional formulation means the optimization 

is carried out in the space of design variables, also called “nested” formulation. This is 

the most common way that has been used to formulate the optimization problems where 

sizing/shape or other design parameters are treated as optimization variables. The 

formulation includes the minimum number of optimization variables. Unfortunately, the 

constraint functions are implicit in terms of the variables since the displacement vector r  

is an implicit function of the variables. Therefore, the gradients of functions cannot be 

obtained easily.   

3.3.1  Formulation 

The optimization problem is to find design variable vector , to minimize the 

cost function in Eq. (3.2.1), subject to the constraints defined in Eq. (3.2.2). Equations 

(3.3.2) may include constraints in Eqs. (3.2.3) - (3.2.5) or other performance 

requirements. To analyze a structural system in order to obtain the response variables, 

such as stress σ  and displacement r , the equilibrium equations for static systems and the 

equations of motion for dynamic systems need to be solved using given stiffness and 

loading information. Note that since σ  and r  in Eqs. (3.2.3) - (3.2.5) are implicit with 

respect to the variables , they can only be evaluated by performing analyses. Thus the 

equilibrium equations have to be satisfied at each iteration.  

x

x
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3.3.2  Gradient Evaluation 

Usually finite difference methods, including forward, backward and central 

differences, are very popular in engineering applications, since they are easy to 

implement and explicit expressions for functions are not needed. However, the finite 

difference methods have accuracy problems, i.e., the so-called “step-size” dilemma 

(Haftka and Gürdal 1992). Another drawback is that they are slow because they require a 

repeated solution of the state equations.  

To evaluate gradients of the constraints analytically, implicit differentiation 

procedures need to be used. Taking the static analysis as an example, numerical values 

for r  can be obtained from the state equations once  is specified: x

( ) ( )xRrxK =  (3.3.1) 

where (3.3.1) is the displacement-based equilibrium equation. K  is the global stiffness 

matrix, whose elements, in many cases, are explicit with respect to . x R  is the external 

load vector that might also be function of , i.e., when the structural self-weight is 

considered. However, an explicit functional form for r  in terms of x  cannot be obtained. 

In the optimization process derivatives of the constraint functions  with respect 

to  are needed. This is called design sensitivity analysis. Taking total derivative of 

 with respect to , we get 

x
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Calculation of the partial derivatives of ( )( )xrx,g  with respect to  and r  

presents no particular difficulty because explicit dependence of the function on  and r  

x

x
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is known.  However, calculation of ( )
x
xr

d
d  in Eq. (3.3.2) leads to two types of analytical 

sensitivity techniques, the so-called direct differentiation method and adjoint variable 

method. Under certain circumstances, one method is more efficient than the other. This 

depends on the relative number of constraints and design variables. Both methods require 

the derivatives of the stiffness matrix and the load vector with respect to design variables.  

In any case, these analytical methods are quite difficult to implement into existing 

analysis codes. To evaluate these derivatives, element level quantities need to be 

differentiated with respect to design variables. Differentiated matrices need to be 

assembled to form global matrices. Also, the analysis software needs to be recalled to 

solve for displacement gradients or the adjoint vectors. Gradients of response functionals 

need to be assembled using the adjoint vectors or the displacement gradients. Further, 

implementation of design sensitivity analysis for nonlinear and multi-physics problems 

becomes more complex because K  and R  depend on the state of the system as well. 

This is one of the main stumbling blocks in practical applications of optimization. For 

structures subjected to dynamic loads or optimal control of dynamic systems, similar 

sensitivity analyses are needed and tend to be more complicated (Tseng and Arora 1989). 

Substantial literature is available that describes theoretical as well as implementation 

aspects of the design sensitivity analysis approaches (Haug et al. 1986; Arora 1995). 

3.4  Alternative Formulation – Design and Behavior 

Variables as Optimization Variables  

If some of the state or behavior variables, such as displacements and forces, are 

treated as variables in the optimization formulation, the implicit optimization problem 
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can be transferred to an explicit form. SAND basically formulates the optimization 

problem in a mixed space of design and state variables, to imbed the analysis equations as 

equality constraints in one single optimization problem; therefore no explicit structural 

analysis or design sensitivity analysis is needed. The SAND formulation in the current 

section follows the most common way of presentation in the literature. 

3.4.1  Formulation 

In the SAND approach, the formulation of the problem is modified by treating the 

design and state variables,  and  as independent variables of optimization, to 

minimize 

x d

( dx,ff = )  (3.4.1) 

Subject to 

( ) 0dx,h =  (3.4.2) 

( ) 0dx,g ≤  (3.4.3) 

where the vector  represents behavior variables such as displacements, forces, or 

stresses. Note that Eqs. (3.4.2) are the equality constraints between the variables, which 

are in fact a system of state equations representing the analysis of a structural and 

mechanical system. They are differential algebraic equations (DAEs), or differential 

equations (DEs) in a transient dynamic system. Equations (3.4.3) are the inequality 

constraints between the variables. Inequality constraints (3.4.3) may include those listed 

in Eqs. (3.2.3) - (3.2.5), while Eqs. (3.4.2) may include Eq. (3.3.1) and other equations. If 

the behavior vector d  includes the displacement vector r , Eqs. (3.3.1) become explicit 

with respect to the variables d . Note that the equilibrium equations (3.3.1) can be written 

d
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in a form such that the assembly of the global stiffness matrix is not needed. These 

aspects will be illustrated further in later chapters for different optimization problems.  

3.4.2  Gradient Evaluation 

In the optimization process, partial derivatives of the functions with respect to  

and  are needed. Since the objective and constraint functions in Eqs. (3.4.1) - (3.4.3) in 

the alternative formulation are all explicit in terms of the optimization variables x  and d , 

the gradients of functions can be obtained easily by direct differentiation. Partial 

derivatives of h  and  with respect to  and d  can be easily calculated as noted before. 

Partial derivative of Eq. (3.3.1) with respect to  gives the stiffness matrix 

x

d

g x

r K  and the 

partial derivative of Eq. (3.3.1) with respect to  needs the derivatives of the stiffness 

matrix. However, 

x

xr dd  is not needed and no system of equations needs to be solved in 

the numerical solution process. Detailed derivations for different structural and 

mechanical system optimization problems will be presented in later chapters. 

3.5  Discussion 

Note that the SAND formulation does not require ( ) 0xh =  be satisfied exactly at 

each iteration of the optimization process, i.e., the equilibrium equation (3.3.1) need not 

be satisfied at every iteration, which can be advantageous for nonlinear and dynamic 

problems. It needs to be satisfied only at the final solution point. This actually implies 

that the vector  never needs to be solved for behavior variable vector d , 

because  is treated as independent variables. The element level equilibrium equations 

can be used in the solution process. Thus the alternative formulation is ideally suited for 

implementation on a parallel computer where each finite element can be assigned to one 

( ) 0dx,h =

d
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processor. All processors can be used to generate the element level quantities and thus 

speed-up the optimization process considerably (Haftka 1985; Haftka and Kamat 1989).  

Also as noted, the equilibrium equation (3.3.1) may not be the displacement based 

FEM equation, even though it is the most commonly used one. Most work in the 

literature has used displacements as optimization variables. However, similar to the 

conventional formulation, the force method or the mixed method can also be combined 

with the SAND formulations (Kirsch and Rozvany 1994). In summary, advantages of the 

alternative formulation are: 

1. An explicit formulation is obtained, and gradient information can be 

calculated easily. 

2. It does not require calculation or implementation of ( )
x
xr

d
d  which is the most 

troubling part of the optimization process. 

3. It does not require decomposition of the K  matrix; i.e., does not require 

solution of the equilibrium equation at each iteration of the optimization 

process. 

4. Since the calculations can be performed at the element level, the approach can 

be easily implemented on massively parallel computers. 

5. Implementation of the approach appears to be simpler. 

6. Multidisciplinary (multi-physics) problems can be treated more easily. 

 Though looks very attractive, the alternative SAND formulations have some 

obvious drawbacks, requiring attention in this research. 

1. The numbers of optimization variables and constraints become very large. 
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Therefore optimization methods for large-scale problems need to be used. 

2. The optimization variables can have different orders of magnitudes. This may 

require development of special procedures for their treatment. 

Many aspects of the alternative formulations will be discussed in details in later 

chapters when particular optimization problems and formulations are presented. 

Numerical examples will be used to illustrate the comparisons between the conventional 

and various alternative formulations. 
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CHAPTER 4 
APPLICATION TO TRUSS DESIGN 

 
 
 

4.1  Introduction 

Truss is a simple but widely-used form of structures. In the design of trusses, like 

other structures, sufficient strength against failure and adequate stiffness need to be 

satisfied. Due to their simplicity, great success has been achieved in the design 

optimization of plane and space truss structures by various methods (Venkayya 1971; 

Haug and Arora 1979; Kirsch 1993). However, the traditional optimization methods need 

sensitivity analysis that is generally computationally expensive due to the implicit nature 

of the constraint functions, i.e., the displacement with respect to the design variables - the 

cross-sectional properties. Zhou and Rozvany (1992) developed an optimality criteria 

(OC) method for solving large-scale structural optimization problems. Adeli and Cheng 

(1994) applied genetic algorithm (GA) to the optimization of large-scale trusses. Adeli 

and Soegiarso (1999) optimized large-scale structures by parallel computing. 

Although different formulations have been presented in the literature based on the 

SAND concept, limited work has been done to compare and evaluate their relative merits. 

In addition, a limited emphasis has been placed on implementation of the formulations 

with the existing simulation codes. In the present work, the idea of SAND is investigated 

with respect to these two aspects using linearly elastic trusses as the application area. The 

idea is to gain insights into the numerical performance of the formulations and their 

implementation with existing analysis codes. Three separate SAND formulations for the 

problem are defined, studied and evaluated. It is noted that although the formulations can 
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be extended for topology design optimization, only the sizing design optimization 

problem is treated. It turns out that the topology design problem needs some additional 

considerations for implementation with existing analysis codes because the formulations 

lose some of their nice features that are available for the sizing design problem. This is 

explained later in this chapter. 

In the present work, a robust sparse SQP program is used for numerical solutions 

of different formulations. An available structural analysis code, ANSYS (2002), is 

integrated in the optimization process to evaluate various structural response quantities. 

The conventional NAND formulation is also implemented with the ANSYS program. 

The role of the structural analysis software in the optimization process with these 

alternative formulations is studied and explained. This part of the investigation will 

facilitate integration of different analysis codes into the optimization process for 

multidisciplinary applications. All the formulations are evaluated using several truss 

structures that have been used as test problems in the literature. Results with different 

formulations are compared and advantages and disadvantages of the formulations are 

discussed (Wang and Arora 2005a). 

4.2  Truss Analysis 

For a general space truss, the equilibrium equation for member i in a global 

coordinate system is given as:  

iiiiii A qkqkQ ==  (4.2.1) 

where  is cross-sectional area of member i, iA ik  is the member stiffness matrix in the 

global coordinate system, and ik  is independent of design variable .  and iA iQ iq  are 
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member-end force and displacement vectors in the global coordinate system. The internal 

axial force  in member i is calculated as iF

i
FQ
iiF Qb=  (4.2.2) 

where  is a 1 × 6 transformation vector between nodal forces and axial force of 

member i, given as  

FQ
ib

[
izyx

FQ
i λλλ000=b ]  (4.2.3) 

xλ , yλ  and zλ  are the direction cosines of member i with respect to the global x, y and z 

directions. Expressing Eq. (4.2.1) in another way, we have, 

i
QF
ii FbQ =  (4.2.4) 

in which  is a 6 × 1 transformation vector, given as QF
ib

[ T
izyxzyx

QF
i λλλλλλ −−−=b ]  (4.2.5) 

 Therefore, the component in the direction j for the member-end force vector  is 

given as  

iQ

[ ] ijijiji FQ η== Q  (4.2.6) 

where jiη  represents one component in . The member nodal displacement vector  

in the global coordinate system is related to the total displacement vector  by a 

QF
ib iq

r m×6  

Boolean matrix : iZ

rZq ii =  (4.2.7) 

Therefore from Eqs. (4.2.1), (4.2.2) and (4.2.7), the internal force and stress in 

member i are given as 
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rB iii AF = ;  rB ii =σ ;  where ii
FQ
ii ZkbB =  (4.2.8) 

iB  is a  vector that is independent of  and  and contains stiffness coefficients 

per unit area in the global coordinate system for member i. Vectors  need to be 

calculated only once during the entire solution process. 

m×1 A r

iB

4.3  Conventional Formulation (T-CF) – Only Areas as 

Optimization Variables  

Only areas of the members are taken as optimization variables and the general 

forms of Eqs. (3.2.1) to (3.2.5) are reduced to:   

Minimize 

( ) i
n

i
i ALf ∑=

=1
A  (4.3.1) 

Subject to 

( ) U
ii

L
i σσσ ≤≤ A ,        i = 1, n (4.3.2) 

( ) U
jj

L
j rrr ≤≤ A ,        j = 1, m (4.3.3) 

U
ii

L
i AAA ≤≤ ,        i = 1, n (4.3.4) 

where  is the length, and  and  are the lower and upper bounds on the areas of 

member i, respectively. Although upper bounds on the areas may not be necessary for all 

applications, they are kept in the formulation for generality. Some applications may need 

to limit the largest size of a member that can be used in the structure. Note that since the 

stress 

iL L
iA U

iA

iσ  and the displacement  are implicit functions of areas, implicit differentiation 

procedures are needed to solve for their derivatives, as explained earlier. 

jr
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4.4  Alternate Formulation 1 (T-AF1) – Areas and 

Nodal Displacements as Optimization Variables  

If the displacements are also treated as optimization variables in the formulation, 

the implicit problem formulation becomes explicit in terms of the variables. This 

formulation has been used by several researchers in the literature (Haftka 1985; Orozco 

and Ghattas 1992a). The problem becomes: minimize the weight of Eq. (4.3.1) subject to 

the following constraints, in addition to the explicit bound constraints in Eqs. (4.3.3) and 

(4.3.4):  

( ) 0
1

=−∑=
=

j

NE

k
jk

g
j RQh

j
rA, ;  rBkkjkjk AQ η= ,       j = 1, m (4.4.1) 

( ) 0≤−= U
iiig σσσ r ;  rBii =σ ,       i = 1, n (4.4.2) 

where  is the nodal force of member k along the jth global displacement. A total of 

NE

jkQ

j members are connected to the same node.  is the external load acting at the node 

along the jth displacement. Equation (4.4.1) is the equilibrium equation for the jth degree 

of freedom; i.e., it represents the jth row of Eq. (3.3.1) and 

jR

kkjk A Bη  contributes to the 

elements of the jth row of K . Thus this formulation requires assembly of the stiffness 

matrix, although its decomposition is not needed. 

Since all the functions in Eqs. (4.4.1) and (4.4.2) are explicit in terms of the 

optimization variables  and , the required derivatives are obtained quite easily. Note 

that differentiation of the equilibrium equation (4.4.1) with respect to the displacements 

 gives elements of the stiffness matrix 

iA jr

jr K . 
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4.5  Alternate Formulation 2 (T-AF2) – Areas, Nodal 

Displacements and Internal Forces as Optimization 

Variables  

In T-AF1, all functions of the problem were required to be expressed in terms of 

the areas and displacements for various derivations and numerical calculations. However, 

if member forces or stresses are also treated as variables, it will permit expressing some 

constraints in terms of forces or stresses, thus simplifying their expressions. This may 

lead to simpler computer implementation and gradient evaluations. The idea of using 

internal forces as additional optimization variables has been studied for reformulation of 

topology optimization problems in the literature (Achtziger 1999; Stope and Svanberg 

2003, 2004). Although there are variations of different formulations, the essential idea is 

to replace the equilibrium equations (4.4.1) by a system of linear equations in terms of 

the member forces. 

By treating the displacements and the member forces  as variables in the 

optimization process, the T-AF2 is to minimize the weight of Eq. (4.3.1), subject to  

iF

( ) 0
1

=−∑=
=

j

NE

k
jk

g
j RQh

j
F r, A, ,         j = 1, m (4.5.1) 

0=−= rBiii
e
i AFh ,         i = 1, n (4.5.2) 

0≤−= i
U
iii AFg σσ ,       i = 1, n (4.5.3) 

Substituting for  from Eq. (4.2.6), the equality constraint in Eq. (4.5.1) - the 

equilibrium equations for each degree of freedom - is obtained as linear equation in the 

variables  as 

jkQ

iF
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0
1

=−∑=
=

jk

NE

k
jk

g
j RFh

j
η ,       j = 1, m (4.5.4) 

 The derivatives of Eqs. (4.5.2) to (4.5.4) with respect to the variables ,  and 

 can be calculated easily. Introduction of the force variables brings more freedom in 

the formulation. For example, it is also viable to keep the equilibrium equations in the 

same form as in Eq. (4.4.1). 

iA jr

kF

4.6  Alternate Formulation 3 (T-AF3) – Areas, Nodal 

Displacements and Stresses as Optimization 

Variables  

Using the displacements and the member stresses simultaneously as optimization 

variables, another explicit formulation for the problem is obtained. Similar to T-AF2, 

various stress-based formulations have been used for truss topology optimization 

(Achtziger 1999; Stope 2003). The problem is to minimize the weight of Eq. (4.3.1), 

subject to  

( ) 0  
1

=−∑=
=

j

NE

k
jk

g
j RQh

j
σr,A, ,        j = 1, m (4.6.1) 

0=−= rBii
e
ih σ ,         i = 1, n (4.6.2) 

The constraints for stresses and displacements in Eqs. (4.3.2) and (4.3.3) represent 

explicit bounds on the variables. To obtain the equality constraints in Eq. (4.6.1) in terms 

of stresses, substitute Eq. (4.2.6) and kkk AF σ= , to obtain 

0
1

=−∑=
=

jkk

NE

k
jk

g
j RAh

j
ση ,       j = 1, m (4.6.3) 

 Since the member stress and nodal displacements are treated as independent 
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variables, the equality constraints in Eq. (4.6.2) are given in the linear form. As for T-

AF2, introduction of the stress variables brings more freedom in the formulation. For 

example, it is viable to keep the equilibrium equations in the same form as in Eq. (4.4.1), 

such as that formulated by Stope (2003). This formulation has been tested and shown to 

be computationally not as efficient as Eq. (4.6.3). Therefore Eq. (4.6.3) is adopted in the 

present implementation. 

 
 
 

Table 4.1 Sizes of different formulations for trusses  

Item T-CF T-AF1 T-AF2 T-AF3 
No. of Variables n n+Lm n+L(n+m) n+L(n+m) 
No. of Equality 

Constraints 0 Lm L(m+n) L(m+n) 

No. of Inequality 
Constraints L(n+m) Ln 2Ln 0 

No. of Simple Bounds n n+Lm n+Lm n+L(n+m) 
 
 
 
Table 4.1 summarizes the sizes of all the formulations in terms of numbers of 

variables and constraints (L is the number of loading conditions). It is clear that the size 

of the SAND formulations (in terms of the numbers variables and constraints) can be 

quite large depending on the number of degrees of freedom and the number of loading 

cases, L. Note however that although the conventional formulation has the smallest 

number of optimization variables, it has the largest number of inequality constraints. 

These constraints are also implicit functions of the variables requiring the use of special 

design sensitivity analysis procedures. However, this formulation has no equality 

constraints while the alternative formulations have many. 
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4.7  Implementation with Existing Programs  

The SAND formulations are solved using the sparse SQP algorithm in SNOPT 

(Gill et al. 2002), while the conventional formulation is solved using the dense SQP 

solver since the problem is dense. SNOPT is a stand-alone program that uses text files to 

communicate with the commercial package ANSYS. It is noted that an interior point 

method was also tried with the formulations; however, its performance was not as good 

as with SQP for the example problems. Therefore, only the results with SNOPT are 

reported. To use the algorithm, cost and constraint functions and their gradients need to 

be calculated. For the conventional formulation, ANSYS (2002) is used to analyze the 

structure and to calculate the displacement gradients. ANSYS is also called during the 

step size calculation to analyze the structure and evaluate the problem functions. 

For the T-AFs, the cross-sectional areas and displacements are sent to ANSYS to 

calculate the member level quantities that are used to form the constraint functions, e.g., 

member level or node level equilibrium equations. This procedure is also used during the 

step size calculation along the search direction. Derivatives of various constraint 

functions are evaluated external to ANSYS using the member stiffness matrices and 

member connectivity information. It is important to note that for the constraints that are 

linear in variables, such as in Eqs. (4.5.3) and (4.5.4), their derivatives are calculated only 

once during the entire solution process. 

4.7.1  T-CF 

The constraint functions in Eqs. (4.3.2) and (4.3.3) are evaluated using ANSYS 

results. The constraints are normalized with respect to their limit values. The constraint 

gradients are evaluated using the direct differentiation method mentioned in Eq. (3.3.2). 
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The matrix xr dd  is calculated by restarting ANSYS with the updated sensitivity loading 

vectors, whose number depends on the number of design variables. In this process, 

additional assembly of the global stiffness matrix and its decomposition are not needed.  

4.7.2  T-AF1 

In numerical implementation, the constraints in Eqs. (4.4.1) and (4.4.2) are 

normalized by  and  (or ), respectively. In evaluation of the constraints in Eq. 

(4.4.1), the member nodal forces from ANSYS output are used directly. Also for the 

inequalities in Eq. (4.4.2), the member stresses from ANSYS output are directly used. 

The derivatives of the constraints are evaluated using the current values of  and r , and 

the vector  calculated for the ith member. It is important to note that the calculations 

for derivatives for T-AF1 and the conventional formulation are similar, in the sense that 

they both need similar member level derivatives and their assembly to form the final 

gradients. The difference is that the structural and the sensitivity analysis equations are 

not solved in T-AF1. 

jR U
iσ L

iσ

A

iB

4.7.3  T-AF2 

In numerical calculations,  is used to normalize the equality constraints in Eq. 

(4.5.4). Equation (4.5.2) is normalized by using the largest external load. The equilibrium 

constraints in Eq. (4.5.4) are evaluated directly by using the current values of the force 

variables . The equality constraints in Eq. (4.5.2) are evaluated using the internal 

forces read from the ANSYS output file and the force variables ; i.e.,  and r  are not 

used to evaluate Eq. (4.5.2). The derivatives of the constraints functions are evaluated 

using the current values of the variables and the vector . 

jR

iF

iF A

iB
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4.7.4  T-AF3 

Similar to T-AF1 and T-AF2, constraints in Eq. (4.6.3) are normalized using . 

Also equality constraints in Eq. (4.6.2) are normalized using the allowable member stress. 

T-AF2 and T-AF3 look similar; however, there are less behavior constraints in T-AF3, 

since the stress constraints also become simple bound on the variables. The equality 

constraints in Eqs. (4.6.2) and (4.6.3) and their derivatives are explicit in terms of the 

optimization variables ,  and 

jR

A r iσ . The variables iσ  and  are used directly to 

evaluate the equality constraints in Eq. (4.6.3). For efficiency of calculations, internal 

stresses in the ANSYS output file (instead of the current nodal displacement vector ) 

and the current values of the stress variables 

A

r

iσ  are used directly to evaluate the equality 

constraints in Eq. (4.6.2). 

4.8  Numerical Examples 

The conventional and three alternative formulations have been used to solve truss 

problems. However, for sake of brevity results for only three example problems are 

presented in order to evaluate the formulations. Since details for the examples have been 

presented in numerous references (Haug and Arora 1979; Haftka 1985; Zhou and 

Rozvany 1993), only a brief description of them is included here. A PC with 2.53 GHz 

processor and 1 GB RAM are used for running the programs and recording the CPU 

times. ANSYS resides on a local area network and is executed on a server. It is noted that 

very severe stopping criteria are used to obtain precise optimal solutions. With relaxed 

stopping criteria, solutions that are very close to the true solutions can be obtained with 

smaller computational effort. 
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4.8.1  Example 1 – 25-bar space truss 

Stress and displacement limits are imposed for this structure (Haug and Arora 

1979; Zhou and Rozvany 1993). The displacement limit is ± 0.00889 m for each node, 

and the lower limit for cross-sectional areas is 6.4516  m610−× 2. Two loading conditions 

are imposed and design variable linking is used. There are 8, 44, 94 and 94 independent 

variables, and 180, 216, 266 and 266 constraints for the four formulations, respectively. 

The initial values for the variables are taken as follows: areas as one, displacements as 

0.00889 m, and the normalized stresses and forces as one. All the four formulations 

obtain the known optimum volume as 0.0894 m3.  

4.8.2  Example 2 – 72-bar space truss 

A 4-story 72-bar space truss is considered next (Haftka 1985; Zhou and Rozvany 

1993). The stress limit for each member is 172.375 MPa and the displacement limit is 

0.00635 m for each node. The minimum member size is taken as 6.4516  m± 510−× 2. 

Two design cases are considered. For Case 1, optimum design without displacement 

constraints is obtained. Design variable linking is not used and only one loading 

condition is imposed (Haftka 1985). The initial values of the variables are as follows: 

areas as 6.4516  m510−× 2, displacements as 0.0254, 0.0254, and -0.0254 m along the x, y 

and z directions for the upper two stories and 0.0127, 0.0127, and -0.0127 m for the lower 

two stories, respectively, and the normalized stresses and forces as one.  

For Case 2, two loading conditions are imposed and design variable linking is 

used (Zhou. and Rozvany 1993). There are 16 independent sizing variables for all the 

formulations. For the alternative formulations, there are 112, 256 and 256 optimization 
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variables, and 592, 736 and 736 constraints (including 96, 240 and 240 equality 

constraints), respectively. The initial values of the variables are as follows: areas as 

6.4516  m510−× 2, displacements as 0.00635, 0.00635, and -0.00635 m along the x, y and 

z directions for the upper two stories and 0.00254, 0.00254, and -0.00254 m for the lower 

two stories, respectively, and the normalized stresses and forces as one. All formulations 

give the known optimum solutions and the final volumes for the two cases as 0.0015666 

and 0.00622 m3, respectively. 

4.8.3  Example 3 – 200-bar plane truss 

Two design cases are considered for this 200-bar plane truss that is subjected to 

three loading conditions (Haug and Arora 1979). The allowable stress for each member is 

206.844 MPa. A displacement limit of ± 0.0127 m is imposed at all the free nodes. The 

minimum member size is taken as 6.4516 m510−× 2. For Case 1, only the stress 

constraints are imposed. The members of the structure are linked into 96 design variables. 

Therefore there are 96, 546, 1146, and 1146 optimization variables, and 600, 1050, 2250 

and 1050 behavior constraints (excluding simple bounds) for the four formulations, 

respectively. The initial values for the variables are as follows: all the cross-sectional 

areas as one, all the displacements as 0.00254 m, and the normalized stresses and forces 

as one. The final volume obtained is 0.4323 m3 with all the formulations, which is 0.0012 

m3 smaller than the one reported by Haug and Arora (1979).  

For Case 2, both the displacement and stress constraints are imposed. The 

numbers of optimization variables are the same as for Case 1 and the numbers of 

behavior constraints are 1050, 1050, 2250 and 1050, respectively. A comparison of 

results shows that the final volume with the alternative formulations of 1.5960 m3 is 
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smaller by 0.0811 m3 than the one reported by Haug and Arora (1979), and the optimum 

volume of 1.6664 m3 obtained with the conventional formulation, is also smaller by 

0.0107 m3 than the reported solution. Note that there are many linear constraints in the 

alternative formulations; therefore, it is possible that the optimization algorithm finds a 

better local minimum point compared to the conventional formulation. 

4.8.4  Discussion of results 

1. Computational effort 

It is observed that all the formulations converged to optimal solutions for the 

problems. For the 200-bar structure, better optimal solutions were obtained than the 

known solutions. For all the examples, the numbers of iterations and calls to ANSYS are 

given in Tables 4.2 and 4.3, respectively. It is seen that the alternative formulations 

generally take more iterations to find optimal solutions, since there are more optimization 

variables. The size of the problem becomes still larger when the structure is subjected to 

multiple loading conditions. However, each iteration requires less computation because 

the solution of the equilibrium equations is avoided, and the design sensitivity analysis 

equations are not solved. The CPU times of all the examples are reported in Table 4.4. It 

is seen that the computational efforts for the three alternative formulations are in general 

smaller than those with the conventional formulation. Among the alternative 

formulations, T-AF2 generally requires less CPU effort compared to the other two. This 

is due to the simpler forms of the constraints and their gradients. 

It is noted that the number of iterations and the computational effort to obtain the 

optimal solution can vary depending on the starting point. For example, numerical 

experiments with Case 2 of the 72-bar truss gave the following range of iterations for 
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different starting points with T-AF1, T-AF2 and T-AF3: 49 – 71, 41 – 59, and 34 – 41. 

 
 
 

Table 4.2 Numbers of iterations for design examples 

Example Problem T-CF  T-AF1 T-AF2 T-AF3 
25-bar 14 65 31 41 

Case 1 21 3 7 12 72-bar 
Case 2 42 49 41 40 
Case 1 28 54 47 38 200-bar 
Case 2 91 316 211 114 

 
 
 

Table 4.3 Numbers of calls to ANSYS for design examples 

Example Problem T-CF  T-AF1 T-AF2 T-AF3 
25-bar 25 + 23* 76 53 59 

Case 1 40 + 38 7 17 22 72-bar 
Case 2 85 + 83 64 47 69 
Case 1 48 + 46 69 75 55 200-bar 
Case 2 223 + 221 432 245 145 

*Analysis + Sensitivity Analysis 
 
 
 

Table 4.4 Computing effort for different formulations (CPU, s) 

Example Problem T-CF T-AF1 T-AF2 T-AF3 
25-bar 1.52 3.30 2.48 2.66 

Case 1 4.67 0.61 1.08 1.34 72-bar 
Case 2 8.41 4.20 3.48 5.03 
Case 1 59.63 52.52 20.41 55.61 200-bar 
Case 2 317.22 205.03 109.59 136.66 

 
 
 
It is important to note that the wall-clock times with all the formulations are much 

larger than the actual CPU times. This is due to the fact that ANSYS is used as an 

independent program executed on a local area network. For example, the wall clock times 

for Case 2 of the 200-bar truss with the four formulations are: 15679, 3048, 1329 and 774 
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s, respectively. These are much larger than the actual CPU time. Thus there is 

considerable overhead time in the use of a commercial analysis program over the local 

area network. The conventional formulation has the largest overhead since the number of 

calls to ANSYS is the largest. 

It is also observed that although a smaller number of major iterations is needed by 

SNOPT for some formulations, the CPU time may still be larger compared to the other 

formulations. This is due to the use of a larger number of iterations to solve the QP 

subproblem for the search direction which may be due to the forms of the constraint 

functions and their gradients. This is seen in Tables 4.2 and 4.4 for Case 2 of the 200-bar 

truss example with T-AF2 and T-AF3. 

In general, since the SAND formulations avoid repeated analysis of the structure 

and design sensitivity analysis, they are more efficient. This will also be the case for 

nonlinear structures where the conventional formulations need to solve nonlinear 

equilibrium equations at each iteration, which is very expensive. SAND formulations also 

simplify the forms of constraints and Jacobian matrices, which are advantageous for 

numerical algorithms and implementations. 

2. Scaling of variables  

An important point to note here is that the alternative formulations include 

different types of variables, which have different orders of magnitudes. Therefore scaling 

of some of the variables is necessary to reduce numerical ill-conditioning. SNOPT has 

two options for automatic scaling: one for linear constraints and variables, and the other 

for all constraints and variables. In addition, manual scaling of the stress and force 

variables was implemented. Several solutions for Case 2 of the 72-bar truss were 
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obtained by using different scaling options. In these experiments, the displacement 

variables were not scaled manually. The numbers of iterations for the T-AF1 to T-AF3 

varied as follows: 49 – 69, 34 – 200+, and 40 – 200+, respectively. Thus it is seen that 

there can be considerable variation in the computational effort to obtain optimal solutions 

with the SAND type formulations. This clearly shows that more research is needed on 

this aspect of automatically scaling the optimization variables for good performance of 

the optimization algorithms. 

3. Role of analysis programs 

As a result of this research, the role of existing analysis programs has become 

clearer with the SAND type formulations. Basically, the pre-and post-processing 

capabilities of the analysis programs can be used directly to evaluate the constraint 

functions. Evaluation of gradients, however, requires member connectivity information 

and member stiffness matrices, and needs to be implemented outside the analysis 

program. These implementations can become easier if the internal member level 

subroutines and processes of the analysis program are accessible directly from the 

optimization program. In evaluating the formulations with truss structures, it was possible 

to implement the member quantities explicitly to evaluate gradients of the constraints. 

For more complex problems this may be difficult to achieve. In that case, the finite 

difference method at the member level may offer a reasonable solution, which needs 

further evaluation. 

The foregoing remarks also apply to the implementation of the conventional 

formulation. For gradient evaluation, however, the right side of Eq. (3.3.5) or Eq. (3.3.7) 

must be assembled, and the analysis program must be restarted to evaluate the 
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displacement gradients or the adjoint vectors. Therefore, the analysis program must have 

restart capability; otherwise, the stiffness matrix and its decomposition will have to be re-

generated which is inefficient. If the program uses iterative procedures to solve the 

system of equations or some other approximate procedures, then this step of the solution 

process will be quite time consuming. Due to these reasons, implementation of the 

conventional formulation is more tedious than the SAND formulations. 

4.9  Evaluation of Formulations 

4.9.1  SAND vs. NAND 

Advantages and disadvantages of the conventional and alternative SAND 

formulations are summarized in Table 4.5. A major disadvantage of the conventional 

formulation is that the equilibrium equations in terms of the displacements must be 

formed and solved during each iteration. The same process must also be repeated during 

step size calculation along the search direction. Another disadvantage is that the gradient 

evaluation requires solution of linear equations which must be done by restarting the 

analysis program. This is cumbersome making the implementation of the process more 

tedious depending on the facilities available in the analysis program. In addition, the 

Jacobian and Hessian matrices of the constraints are dense, limiting the size of the design 

problem that can be treated efficiently. It is noted that all the formulations need partial 

derivatives of the member equilibrium equations with respect to the design variables and 

displacements. The difference is in the use of these derivatives in different formulations. 

A major disadvantage of the alternative formulations is that the numbers of 

variables and constraints become very large, although the problem functions are highly 

sparse. Therefore sparsity must be utilized to solve the optimization problem efficiently; 
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i.e., optimization algorithms for large sparse problems must be used. This also requires a 

thorough knowledge of the sparsity structure of the problem functions. 

 
 
 

Table 4.5 Advantages and disadvantages of conventional and alternate SAND 
formulations    

Formulation Advantages Disadvantages 

Conventional 

1.  Least number of optimization variables. 
2.  Equilibrium condition is satisfied at each 

iteration. 
3.  Intermediate solutions may be usable. 

1.  Equilibrium equation must be 
explicitly solved, which is 
expensive. 

2.  Constraints are implicit functions 
of the variables. Their evaluation 
requires structural analysis; e.g., 
during step size calculation as 
well. 

3.  Design sensitivity analysis 
procedures must be used to 
evaluate gradients.  

4.  Implementation with the analysis 
programs is tedious, requiring 
restart capabilities. 

5.  Dense Jacobian and Hessian 
matrices; difficult to treat large 
number of design variables. 

Alternative 

1. Formulations are explicit in terms of the 
variables. 

2. Equilibrium equation in terms of the 
displacements is not solved. 

3. Many constraints become linear in 
variables; the displacements constraints 
are simple bounds on the variables. 

4. Jacobians and Hessian are sparse. 
5. Design sensitivity analysis is not needed. 
6. Implementation with existing analysis 

software is relatively straightforward 
existing software is quite straightforward. 

1. Numbers of variables and 
constraints are very large. 

2. Optimization algorithms for 
large-scale problems and sparsity 
of the problem must be utilized. 

3. Optimization variables must be 
normalized. 

4. Intermediate solutions may not 
be usable. 

 
 
 

4.9.2  SAND 

Based on the present implementation and the study, advantages and disadvantages 

of the three alternative SAND formulations for trusses are summarized in Table 4.6; the 

framed structures have similar advantages and disadvantages. The displacement 
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constraints are always simple bounds on the variables. In T-AF3, stress constraints also 

become simple bounds on the variables, and all the remaining constraints are equalities. 

The stress constraints in Eq. (4.5.3) and the equilibrium constraints in Eq. (4.5.4) in T-

AF2 are linear in optimization variables which are treated more efficiently in 

computations. It is not necessary to include member forces and stresses as variables in the 

formulations to obtain explicit expressions for constraints and Jacobian matrices; 

however, a careful look at the formulations shows that T-AF2 and T-AF3 have simpler 

forms of constraints and their Jacobian matrices than T-AF1, since the vector  appears 

only once in these two formulations (Eqs. (4.5.2) and (4.6.2) respectively). Both the 

constraints in Eqs. (4.4.1) and (4.4.2) in T-AF1 contain . Note also that 

implementation of the constraints in Eq. (4.4.1) and its Jacobian matrix is more tedious, 

which makes T-AF1 not as attractive as the other two formulations. T-AF2 and T-AF3 

“decouple” the system equilibrium equations in Eq. (3.3.1) into separate equilibrium 

equations for the entire structure in terms of forces, and the equilibrium equations for 

each member in terms of the displacements. Although more variables are introduced, 

their inclusion however simplifies the functions and their gradient expressions, and 

computer implementations. They also lead to more sparse Jacobian matrices which 

improves performance of the formulations further. Thus, although T-AF2 and T-AF3 

have more variables and constraints, they work better than T-AF1 in most cases. Note 

that even though there are more inequality constraints in T-AF2 than T-AF3, T-AF2 still 

performed well or even better than T-AF3, since the additional constraints are linear 

which can be treated more efficiently. 

iB

iB
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It is also possible to include the 16×  internal force vector  in Eq. (4.2.1) as 

optimization variables in T-AF2, instead of axial force . Although this adds five more 

variables for one truss element, the formulation is more general for other finite elements, 

such as frames. 

iQ

iF

 
 
 

Table 4.6 Comparison of alternative SAND formulations 

 T-AF1 T-AF2 T-AF3 
Optimization 

Variable 
rA,  FrA, ,  σrA, ,  

Equilibrium 
Constraints 

 

j

NE

k
kkjk RA

j
=∑

=1
rBη  

Assembly of global stiffness 
matrix needed 

jk

NE

k
jk RF

j
=∑

=1
η  

Linear constraints; 
No assembly of global 

stiffness matrix 

jkk

NE

k
jk RA

j
=∑

=
ση

1
 

Bilinear form; 
No assembly of global 

stiffness matrix 
Element 

Equilibrium 
Constraints 

-- 
rB iii AF =  

Bilinear form 
rB ii =σ  

Linear constraints 

Stress 
Constraints 

U
ii

L
i σσ ≤≤ rB  

Linear constraints 
i

U
iii

L
i AFA σσ ≤≤  

Linear constraints 
Simple bounds 

Advantages 

1. Fewer optimization 
variables. 

 

1. The assembly of the global stiffness matrix and its 
derivatives are avoided. 

2. Very sparse Jacobian and Hessian matrices. 
3. Implementation with existing programs is 

straightforward.  
4. Stress constraints are linear in T-AF2, and simple 

bounds in T-AF3. 

Disadvantages 

1. The assembly of the global 
stiffness matrix and its 
derivatives are needed. 

2. Derivative calculation and 
implementation is more 
tedious. 

3. Denser Jacobian matrices. 

1. Larger numbers of variables and constraints. 
 

 
 
 
The issue of implementation of formulations (essentially T-AF1) with existing 

simulation codes has been discussed by Biegler et al. (2003) for more general 

applications, such as PDE-constrained optimization problems. It is noted there that use of 
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the Jacobian of the equilibrium constraints (stiffness matrix) in the optimization process 

is a major difficulty. Some simulation codes do not explicitly generate this Jacobian 

matrix while others use only an approximation for it. Therefore, optimization with such 

codes is a challenging problem. The present work shows that with T-AF2 and T-AF3, 

explicit Jacobian of the equilibrium constraints in terms of displacements is not required. 

Therefore, it is possible to use these types of formulations for optimization of more 

general problems with the existing simulation codes. 

4.9.3  Topology optimization 

Although the current study focuses on the sizing design problem, the formulations 

can be used for the topology design problem as well. The beauty of the SAND 

formulations for topology design is that both cross-sectional areas and displacements are 

treated as independent variables; therefore it is possible for the cross-sectional area to 

reach a zero value without causing singularity or non-differentiability. If a member is 

removed from the structure, the corresponding stress constraint is no longer included. 

This is achieved by simply modifying some constraint expressions in the formulations. In 

T-AF1, the stress constraints in Eq. (4.4.2) can be re-written as 

U
iiii

L
ii AAA σσ ≤≤ rB ,       i = 1, n (4.9.1) 

If , Eq. (4.9.1) is automatically satisfied, which means that the constraints are 

effectively removed. In T-AF2, Eq. (4.9.1) is obtained by combining Eqs. (4.5.2) and 

(4.5.3). In T-AF3, the simple bound on the stress constraints must be reformulated as 

nonlinear constraints: 

0=iA

U
iiii

L
ii AAA σσσ ≤≤ ,       i = 1, n (4.9.2) 
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When combined with Eq. (4.6.2), the same form as in Eq. (4.9.1) is obtained 

Note that in the present work,  is not allowed to reach a zero value; therefore 

all the formulations are equivalent. However, some nice features of the sizing design 

problem are lost when the formulations are extended to topology design. First of all, Eq. 

(4.9.1) becomes a bi-linear form instead of the linear one, as in Eq. (4.4.2). In T-AF3, the 

stress constraints in Eq. (4.9.2) are bi-linear forms instead of simple bounds on the 

variables. Since the Jocobian matrix of the constraints needs to be calculated during each 

iteration (as opposed to only once for the linear constraints during the entire solution 

process), these changes make the implementation more tedious, requiring more 

computations for the topology design problems. 

iA

4.10  Summary 

Based on the extensive numerical experiments with the formulations, the 

following conclusions and observations are made: 

1. Alternative SAND formulations are more efficient than the conventional 

formulation. 

2. In T-AF2 and T-AF3, the global equilibrium equations in terms of the 

displacements are not needed. These equations are formed and used in terms 

of the element nodal forces. Only the element equilibrium equations in terms 

of displacements involving the element stiffness matrices are needed. Thus 

these formulations do not require assembly of the global stiffness matrix; i.e., 

the Jacobian matrix of the global equilibrium equations in terms of 

displacements. This is a major advantage of these formulations because for 

more complex applications, this matrix may not be available from the analysis 
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code (Biegler et al. 2003; Arora and Wang 2005). 

3. T-AF2 where the forces are also used as variables is better than T-AF1 and T-

AF3. It is easier to generalize the formulation for other finite elements to 

model and design more complex structures. 

4. Normalization (scaling) of the variables is needed in the SAND formulations. 

More effective automatic scaling procedures need to be developed to improve 

efficiency of the formulations. 

5. Sparsity of the problem functions must be utilized for efficiency and 

effectiveness of the SAND formulations. 

6. Implementations with the SAND formulations with the existing analysis codes 

is simpler compared to the conventional formulation in the sense that no 

system of equations needs to be formed and solved for gradient evaluations. 

This is highly advantageous for complex applications where the simulation 

code may be using iterative or approximate procedures to solve the governing 

equations. For such cases the sensitivity calculations for the conventional 

formulation become tedious and inefficient.  
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CHAPTER 5 
APPLICATION TO FRAME DESIGN 

 
 
 

5.1  Introduction 

Three alternative formulations based on the concept of simultaneous analysis and 

design (SAND) have been presented in Chapter 4. The formulations involved 

combinations of displacements, axial forces and stresses as optimization variables. 

Introduction of more variables in the formulations changed forms of the constraints and 

their derivatives. All functions of the formulations became explicit in terms of the 

optimization variables. Therefore, design sensitivity analysis methods, which require 

adaptation of structural analysis procedures for optimization, were no longer needed. All 

the formulations worked quite well and very accurate optimal solutions were obtained. 

Solutions of sample problems were also compared with those obtained by the 

conventional formulation. It was concluded that the alternative formulations were more 

efficient than the conventional formulation in most cases. Also their implementation with 

the existing analysis software was easier compared to that for the conventional 

formulation. In the present chapter, two of the formulations are extended and evaluated 

for optimization of framed structures. 

An overview of the literature on different formulations for structural optimization 

has been presented in Chapter 2 and the review paper by the authors (Arora and Wang 

2005). Here an overview of the literature related to the framed structures is presented. 

Optimal design of framed structures has been actively studies in the literature (Chan et al. 

1995; Adeli and Soegiarso 1999; Pezeshk et al. 2000; Arora 2002). An extensive list of 
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references on the subject can be found in Burns (2002). Khan (1984), Sadek (1992), and 

Chan et al. (1995) formulated the problem of optimum design of frames using some 

approximate relationships between cross-sectional properties and used the optimality 

criterion method to obtain solutions. Saka (1980) presented a formulation that included 

the displacements of joints as optimization variables in addition to the member areas. 

Member stiffness equations based on the displacement method were imposed as equality 

constraints. The Simplex method was used to solve the problem after move limits were 

specified for the linearized subproblems. It was concluded that the proposed approach 

made it possible to avoid the solution of equilibrium equations and the number of 

iterations involved was smaller. Another class of alternative formulations for optimum 

structural design is the so-called displacement-based two-phase procedure. Missoum et 

al. (2002) presented that procedure and applied it to optimize trusses and geometrically 

nonlinear framed structures. These formulations have severe limitations as noted by the 

authors and by Arora and Wang (2005).  

In the present chapter, the SAND concept is extended to investigate use of the 

alternative formulations for optimum design of frames with existing analysis programs. 

There is a possibility to use member forces and displacements as optimization variables. 

These are considered as major extensions of the formulations used previously for trusses 

(Wang and Arora 2005). As noted earlier, Saka (1980) has previously used nodal 

displacements as optimization variables and solved the problem using the sequential 

linear programming (SLP) method. Major differences between that work and the present 

work are: (i) member forces are also treated as optimization variables in one of the 

formulations, (ii) an existing analysis software ANSYS is used directly in the 
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optimization process, (iii) a sequential quadratic programming (SQP) algorithm is used to 

solve optimization problems which is more robust than the SLP method, and (iv) relative 

performance of the formulations is studied. 

It is noted that a major objective of the current work is to develop and evaluate 

different optimization formulations using existing design examples with known solutions. 

Therefore, definitions of the design variables and constraints are taken from the published 

literature so that a direct comparison of the solutions can be made. It is realized that this 

definition of the design optimization problem has limitations because not all the design 

code constraints can be imposed for practical applications. However, this restricted 

problem definition can still be useful at the preliminary design stage of the structure. The 

alternative formulations can be applied to more practical frame design problems which 

will be considered in the future work.  

5.2  Optimal Design Problem Statement 

5.2.1  General problems 

As noted in Chapter 4, the optimization problem is to find a design variable vector 

representing member sizes to minimize a cost function, which may be volume or weight 

of the structure subject to the design constraints that are imposed as inequality constraints 

on stresses, displacements and design variables. 

5.2.2  Sizing variables 

For a frame member, the design variables can be the cross-sectional dimensions, 

i.e., depth and width of a rectangular section, radius of a solid circular section, and so on. 

To calculate the nodal displacements and member stresses, the cross-sectional area, the 

moment of inertia and the section modulus of the member are required. Areas or moment 
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of inertias of members are also popular to be chosen as primary design variables, while 

expressing other cross-sectional properties in terms of them by explicit nonlinear 

relationships. A suggested form of the relationships among the cross-sectional properties, 

where the member cross-sectional area A  is treated as the only design variable, is (Saka 

1980): 

βαAS = ;     (5.2.1) φγAI =

where  is the section modulus and S I  is the moment of inertia. α  and γ  are constants 

that depend on the shape of the cross-section. β  and φ  are positive powers. By 

performing regression analysis of the cross-sectional data for commercially available 

wide-flange (W) steel sections, nonlinear relationships between the cross-sectional 

properties are obtained as follows (unit: inch) (Khan 1984; Sadek 1992; Sedaghati and 

Esmailzadeh 2003): 
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Although this representation of the design optimization problem is quite 

restrictive, it is adopted to evaluate the alternative formulations and compare solutions 

with the previously published results for some example problems. After the evaluation 

has proven usefulness of the alternative formulations, a more realistic definition of the 
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problem will be pursued in the future work. It is also important to note that relations in 

Eqs. (5.2.2) and (5.2.3) are discontinuous when A  = 15 and A  = 44. These 

discontinuities can be troublesome for the gradient-based optimization methods. 

5.2.3  Mathematical statement 

The design optimization problem of minimizing the volume of a frame is to 

determine the design variables , (i = 1, n) to iA

Minimize 

i
n

i
i ALf ∑=

=1
 (5.2.4) 

Subject to 

U
ii

L
i σσσ ≤≤ ,        i = 1, n (5.2.5) 

U
jj

L
j rrr ≤≤ ,       j = 1, m (5.2.6) 

U
ii

L
i AAA ≤≤ ,       i = 1, n (5.2.7) 

where n and m are the numbers of members and degrees of freedom for the frame, 

respectively. and  are the ith member cross-sectional area and its length. 

 and  are the lower and upper bounds for the stresses , nodal 

displacements , and design variables, respectively. To simplify the presentation, only 

one load case is considered; however, additional loading conditions can be treated 

similarly. Also, members of the structure are usually linked together into groups for 

symmetry and other considerations. Such linking, although not shown, can be routinely 

incorporated into the problem definition.  

iA iL

L
i

L
j

L
i A,r,σ   U

i
U
j

U
i A,r,σ   iσ

jr 
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 In the literature, the combined axial and bending stress equation given below has 

been used by different researchers (Saka 1980; Khan 1984; Sadek 1992). In order to 

compare solutions, it is adopted here as well 

i

i

i

i
i S

M
A
P

±=σ  (5.2.8) 

where  and  are the axial force and bending moment, respectively.  is the section 

modulus of member i.

iP iM iS

 The combined axial and bending stress constraints are imposed at 

both ends of each frame member. Note that although the shear stress and other design 

code constraints should be included in the formulation, they cannot be imposed due to the 

limitations of the design variable definitions (Saka 1980; Khan 1984; Sadek 1992). 

5.3  Frame Analysis 

For a general frame structure, the equilibrium equation for member i in the global 

coordinate system is expressed as: 

( ) i
b
ii

a
iiiii IA qkkqkQ  +==  (5.3.1) 

where ik  is the member stiffness matrix in the global coordinate system, and  and iQ iq  

are nodal force (including moments) and displacement vectors (  in the global 

coordinate system. Note that , where 

)16×

ii
T
ii TkTk ′= ik′  is the member stiffness matrix in 

the local coordinate system, and  is a transformation matrix between the local 

(member) and global coordinate systems. The member stiffness matrix  can be 

separated into axial and flexural parts, and  and  are 

iT

ik

a
ik b

ik 66×  constant matrices. 

Member nodal displacement vector  can be related with the global nodal iq
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displacement vector r for the structure by a m×6  Boolean matrix : iZ

rZq ii =  (5.3.2) 

Therefore from Eqs. (5.3.1) and (5.3.2), nodal force vector for member i in the global 

coordinate system can be written as 

( ) ( )rBBrZkkQ    b
ii

a
iii

b
ii

a
iii IAIA +=+=  (5.3.3) 

It is important to note that  and  are  transformation 

matrices that are independent of  and . They are only functions of the elastic 

modulus 

i
a
i

a
i ZkB = i

b
i

b
i ZkB = m×6

iA iI

E , member length and direction cosines between the local and global 

coordinate systems. 

The jth nodal force component  in the global coordinate system for member i 

is 

jiQ

[ ] ( )rBeBeQeQ  b
i

T
ji

a
i

T
jii

T
jjiji IAQ +===  (5.3.4) 

where  is a  Boolean vector that is independent of  and  to determine the 

position of the corresponding nodal force component j. From Eq. (5.3.3), the axial force 

and the nodal bending moment of a frame member (in the local coordinate system) are 

given as  

je 16× iA iI

rBlQl  a
i

T
iii

T
ii AP ==  (5.3.5) 

rBpQp  b
i

T
iii

T
ii IM ==  (5.3.6) 

where , and [ ]T
iyxi 0000 λλ=l xλ  and yλ  are the direction cosines of member 

i with respect to the global x and y directions; [ ]Tii 000100=p  or 
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[ T
ii 100000=p ]  .  and  are il ip 16×  transformation vectors that are 

independent of  and . Therefore from Eq. (5.2.8), the combined axial and bending 

stress for a frame member is 

iA iI

rBpBl ⎟
⎠
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⎜
⎝
⎛ ±= b
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T
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T
ii

t
2

σ  (5.3.7) 

where  is the height of the cross-section for member i, related to the variables as it

i

i
i S

It 2
= .  

From Eqs. (5.3.5) and (5.3.6), Eq. (5.2.8) can also be expressed directly in terms 

of the member force vector , as follows: iQ
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i SASA
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⎛
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1111σ  (5.3.8) 

5.4  Conventional Formulation (F-CF) – Only Areas as 

Optimization Variables  

Only the cross-sectional areas of the frame members are considered as design 

variables. The design problem is to minimize the cost function of Eq. (5.2.4), subject to 

the constraints of Eqs. (5.2.5) to (5.2.7). This formulation uses the smallest number of 

optimization variables. However, the problem functions are implicit in terms of the 

variables, since the displacement vector r  is an implicit function of the member cross-

sectional properties. Explicit expressions for  and, thus, for the constraint functions in 

terms of the design variables cannot be obtained. The equilibrium equations need to be 

solved for evaluation of constraint functions. Also, gradients of the functions need to be 

evaluated using special sensitivity analysis procedures (Arora 1995). 

r
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5.5  Alternate Formulation 1 (F-AF1) – Areas and 

Nodal Displacements as Optimization Variables  

If the nodal displacements  are also treated as independent variables in the 

optimization formulation, the implicit problem functions are transferred to explicit ones. 

In addition, the global equilibrium equations need not be solved explicitly as they are 

treated as equality constraints in the optimization process. Thus decomposition of the 

global stiffness matrix is avoided. The optimum design problem is to determine  and  

to minimize the cost function defined in Eq. (5.2.4), subject to the constraints as 

r

A r
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=
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tg σσ rBpBl ,       i = 1, n (5.5.2) 

where  is the nodal force of member k which has same direction as the displacement 

j. Member k is connected to the node which has displacement j as one of the degrees of 

freedom (in the global coordinate system). NE

jkQ

j is the number of members connected to 

the same node.  is the resultant external load acting at node p in the direction of 

displacement j. Note here that  and  can be either forces or moments. Equation 

(5.5.1) in fact includes the equilibrium equation for the degree of freedom j. 

Displacement constraints in Eq. (5.2.6) become simple bound constraints. The lower 

bound constraint on stress can be treated similar to that in Eq. (5.5.2). 

jR

jkQ jR

Differentiating Eqs. (5.5.1) and (5.5.2) with respect to all the variables directly, 

explicit expressions for derivatives can be obtained. The constraint functions and their 
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derivatives can be easily calculated using the current nodal displacement vector r  and 

cross-sectional areas A . 

5.6  Alternate Formulation 2 (F-AF2) – Areas, Nodal 

Displacements and Member Forces as Optimization 

Variables  

In F-AF1, the constraint functions in Eqs. (5.5.1) and (5.5.2) need to be expressed 

explicitly in terms of areas and displacements. It is seen that evaluation of Eqs. (5.5.1) 

and (5.5.2) for the functions and their derivatives is a little tedious. However, if the 

member forces are also treated as variables, the constraints in Eqs. (5.5.1) and (5.5.2) 

become very simple. The stress in Eq. (5.5.2) can now be replaced by Eq. (5.3.8). This 

leads to simpler expressions and computer implementation. To evaluate this and compare 

efficiency, nodal forces are also treated as variables in F-AF2. The formulation is to 

determine , , and  ( ) to minimize the cost in Eq. (5.2.4), 

subject to 
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There are 6 equality constraints for forces  for member i; therefore, Eq. (5.6.2) 

in fact includes 6n equality constraints. 

iQ

It can be seen that once the areas , nodal displacements r  and member forces A
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Q  are available, Eqs. (5.6.1) to (5.6.3) can be evaluated directly for constraints and their 

derivatives. Table 5.1 summarizes the sizes of all the formulations in terms of numbers of 

variables and constraints (L is the number of loading conditions). 

 
 
 

Table 5.1 Sizes of different formulations for frames 

Item F-CF F-AF1 F-AF2 
No. of Variables n n+Lm n+L(m+6n) 

No. of Equality Constraints 0 Lm L(m+6n) 
No. of Inequality Constraints L(m+4n) 4Ln 4Ln 

 No. of Simple Bounds  n n+Lm  n+Lm 
 
 
 

5.7  Implementation with Existing Programs  

A sequential quadratic programming (SQP) algorithm in SNOPT package is used 

to solve optimization problems (Gill et al. 2002). It is a stand-alone Windows-based 

program that uses text files to communicate with the commercial package ANSYS. To 

use the algorithm, cost and constraint functions and their gradients need to be provided. 

For all the formulations, ANSYS is used as a black-box and the data from its output files 

are used to evaluate the functions and their derivatives externally to ANSYS. A system-

level command is used to execute the stand-alone program ANSYS. Sparsity of all the 

function gradients is exploited while using SNOPT with alternate formulations. For F-

CF, member areas, moments of inertia and other data are sent to ANSYS which performs 

structural analysis and writes nodal displacements and member forces in the output file. 

In the alternative formulations, no equilibrium equations are solved as nodal 

displacements are also sent to ANSYS and it calculates and outputs member forces. 



www.manaraa.com

 58

5.7.1  F-CF 

In the conventional formulation, ANSYS is used to analyze the structure and is 

called again to calculate the sensitivity information by the analytical method (Arora 

1995).  The constraint gradients are evaluated using the direct differentiation method, as 

mentioned in Chapter 3. In this process, additional assembly of the global stiffness matrix 

and its decomposition are not needed. ANSYS is restarted with the new sensitivity load 

vectors to evaluate the gradients. The sensitivity load vectors are assembled external to 

ANSYS using data in its output file and the element matrices. Therefore, ANSYS is 

called twice for one evaluation of both functions and their derivatives, which makes the 

implementation a little tedious. In addition, each call for function evaluation during line 

search requires complete structural analysis. This implementation is similar to that for the 

trusses in Chapter 4 where more details are given. 

5.7.2  F-AF1 

Since matrices  and  for member i are fixed and independent of  and r , 

the constraint functions in Eqs. (5.5.1) to (5.5.2) and their derivatives can be easily 

implemented using the current  and r .  and  contain information about elastic 

modulus E, member connectivity information, such as transformation between the local 

and global coordinate systems, and member length. All these can be read from the 

ANSYS input or output file. Another possibility is to evaluate the equilibrium equality 

constraints in Eq. (5.5.1) and stress constraints in Eq. (5.5.2) by directly using the 

member forces and stresses in ANSYS output file, instead of using  and r  to calculate 

them. Derivatives of constraint functions are evaluated external to ANSYS, using the 

a
iB b

iB A

A a
iB b

iB

A
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matrices  and , and the member connectivity information. Note that since matrices 

 and  in Eqs. (5.5.1) to (5.5.2) are simple in form, they are programmed in user 

subroutines. 

a
iB b

iB

a
iB b

iB

5.7.3  F-AF2 

It is seen that once the cross-sectional areas , nodal displacements  and 

member nodal forces Q  are available, Eqs. (5.6.1) to (5.6.3) can be used to evaluate the 

constraints and their derivatives. This requires values of the variables  and  and the 

matrices  and  for the ith member. Similar to F-AF1, the matrices  and  in 

Eq. (5.6.2) and its derivatives are calculated using the output data from ANSYS. In this 

study, the equilibrium constraints in Eqs. (5.6.1) and (5.6.2) are calculated directly using 

the current values of ,  and r . However, it is viable to evaluate Eq. (5.6.2) by 

directly using the member forces in ANSYS output file, instead of using  and  to 

calculate them. 

A r

A r

a
iB b

iB a
iB b

iB

A Q

A r

In both the alternative formulations, only the cross-sectional properties and 

displacements are needed by the analysis code to calculate the member level quantities, 

such as forces, and to calculate the constraint functions and their derivatives. ANSYS is 

called only once for one evaluation of both functions and their derivatives; therefore, no 

restart capability is needed. Basically F-AF1 and F-CF need similar calculations for 

gradient evaluations, except that no sensitivity analysis equations are solved in F-AF1. In 

F-AF2, the constraints in Eqs. (5.6.2) and (5.6.3) are both member-level calculations. Eq. 

(5.6.1) contains global equilibrium equations, which is in a simple sparse linear form and 

no assembly of global stiffness matrix is needed. The gradient calculation of functions in 
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Eq. (5.6.1) is performed only once in the optimization process, since they are linear in 

variables. Therefore, the inclusion of forces as variables provides a decoupled 

representation of the problem functions, which makes the implementation of F-AF2 

easier than F-AF1.  

5.7.4  Optimization procedure 

The step-by-step optimization procedure is explained as follows: 

1. Define the optimization problem, including the objective function, 

optimization variables and constraints. Estimate initial values of the variables.  

2. The optimization code calls the user-supplied subroutines, which calculate the 

objective and constraint functions and their derivatives. With the current 

values of the optimization variables, the user-supplied subroutines further call 

ANSYS to obtain the internal forces and stresses for each frame member. 

Constraint functions and their derivatives are evaluated explicitly using the 

member stiffness matrices and connectivity information. During the line 

search, ANSYS is called again to evaluate the problem functions. 

3. Optimization variables are updated and the stopping criteria are checked for 

optimum solution.  

5.7.5  Role of ANSYS 

Role of existing analysis software (ANSYS) in different formulations is 

elaborated here for framed structures. The analysis software provides member 

connectivity information and direction cosines, etc. Also if desirable, equality constraints 

in Eq. (5.5.1) can be formed directly using the member forces in ANSYS output file. It 

may seems that use of the analysis program is not necessary in the alternative 
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formulations, since the member-level matrices for a frame member are simple and 

explicit, and they can be directly programmed and calculated. However, the pre-and post-

processing capabilities of the existing codes are useful, especially for problems that are 

more complex. In those problems, it may not be possible or trivial to write the finite 

element matrices explicitly, and their coding may not be straightforward. This aspect will 

be investigated in future research, when structures that are more complex are considered, 

such as shells and plates. 

In the conventional formulation, since the analysis program must be restarted to 

evaluate the displacement gradients, the program must have restart capability to make F-

CF efficient; otherwise, the stiffness matrix and its decomposition will have to be re-

generated which is inefficient. If the program uses iterative procedures to solve the 

system of equations or some other approximate procedures, then that procedure must be 

repeated for sensitivity analysis which can be quite time consuming. It is noted here that 

although ANSYS is used in the present study, it can be replaced with any other analysis 

program with similar capabilities. 

5.8  Evaluation of Formulations 

Table 5.1 lists the sizes of the three formulations. Note that the F-CF has the least 

numbers of variables and constraints. It is obvious that the alternative formulations 

increase the size of the optimization problem substantially. A major disadvantage of F-

CF is that the equilibrium equations in terms of the displacements must be solved in each 

iteration. The same process must also be repeated during step size calculation along the 

search direction. Another disadvantage is that the gradient evaluation requires solution of 

linear equations which must be done by restarting the analysis program. The sensitivity 
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load vectors must be assembled. This is cumbersome making the implementation of the 

process more tedious depending on the facilities available in the analysis program. The 

implementation can be facilitated if the analysis software allows call to the element level 

calculation directly. Also, the Jacobian and Hessian matrices of the constraints are dense 

in this formulation, limiting the size of the design problem that can be treated efficiently. 

 
 
 

Table 5.2 Comparison of alternative SAND formulations 
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Advantages 

1. Fewer optimization variables. 
 

1. The assembly of the global stiffness 
matrix and its derivatives are avoided. 

2. Very sparse Jacobian and Hessian 
matrices. 

3. Implementation with existing programs 
is straightforward.  

Disadvantages 

1. The assembly of the global stiffness 
matrix and its derivatives are needed.

2. Derivative calculation and 
implementation is more tedious. 

3. Denser Jacobian matrices. 

1. Larger numbers of variables and 
constraints. 

 

 
 
 
Advantages and disadvantages of the two alternative formulations are 

summarized in Table 5.2. F-AF1 is more suitable for problems that do not involve stress 
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constraints. In that case, only the equilibrium constraints in Eq. (5.5.1) are included as 

behavior constraints and the displacement constraints are simple bounds on the variables. 

In F-AF2 with forces also as variables, the optimization problem is larger with more 

variables and constraints. However, the assembly of the global stiffness matrix and its 

derivatives are avoided, which is the major difference between F-AF2 and the previous 

two formulations. Only member-level calculations are required in the constraints in Eqs. 

(5.6.2) and (5.6.3). Note that the equilibrium constraints in Eq. (5.6.1) are linear and the 

stress constraints in Eq. (5.6.3) are simpler. The gradients of the linear constraints in Eq. 

(5.6.1) are programmed independently and calculated only once in the solution process. 

Obviously it is not necessary to include member nodal forces as variables in the 

formulations to obtain explicit expressions for the constraints; however, their inclusion 

simplifies the form of constraints and Jacobians, and hence the numerical 

implementations. It is also noted that the alternative formulations require study of the 

sparsity structure of the Jacobian matrices so as to take full advantage of the sparse 

matrix operations in SNOPT.  

5.9  Numerical Examples 

To evaluate the formulations, two framed structures are optimized. Each structural 

member is treated as one finite element. The material used for both examples is the same: 

steel with modulus of elasticity E = 206,844 MPa and the combined axial and bending 

stress limit for all members as 165.4752 MPa. A PC with 2.5 GHz processor and 1 GB 

RAM is used for running the programs and recording the relative CPU times. ANSYS 

resides on a local area network. Sparsity of the constraints in Eqs. (5.5.1) to (5.6.3) and 

their gradients is implemented in SNOPT. The lower and upper limits on cross-sectional 
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areas are 0.0032258 and 0.064516 m2, respectively. Very tight stopping criteria are used 

in SNOPT to obtain precise optimal solutions. The final optimal volumes and CPU 

efforts for design examples are listed in Table 5.3, and the numbers of iterations and calls 

to the analysis program are given in Table 5.4.  

5.9.1  Example 1 – 10-member frame 

This 10-member rigid frame example is taken from Khan (1984). Only one 

loading condition is imposed, and no variable linking is used; therefore ten cross- 

sectional areas are the design variables. The horizontal displacements of the free nodes 

are limited to 0.00254 m. The initial areas are taken as 0.0129032 m± 2 for all the 

formulations. The initial displacements are taken as 0.00254 m, and the rotations are 10-3, 

respectively. The initial force variables before scaling are taken as unity. The final 

optimal solutions for the three formulations are similar, i.e., 0.422229 m3. At the 

optimum, no stress constraint is active while the horizontal displacements of nodes 3 and 

4 are active. The optimal areas are: 0.028387, 0.023364, 0.003226, 0.003226, 0.046499, 

0.010240, 0.007217, 0.016479, 0.016286 and 0.003226 m3. Due to discontinuity of the 

relationships in Eqs. (5.2.2) and (5.3.3), very accurate optimality conditions could not be 

satisfied; however, the final areas represent the best feasible solution. It is noted that the 

optimal design found in this study is better than the three solutions 0.433002, 0.506799 

and 0.433002 m3 obtained by Khan (1984). This is due to the use of a more robust 

optimization algorithm in the present study.  

5.9.2  Example 2 – 25-member frame 

The 25-member framed structure has been designed by Khan et al. (1978), Khan 

(1984), and Sadek (1980). All members are 2.54 m long, except for the diagonal ones. 
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The diagonal members are treated as frame members. Only one loading condition is 

considered and variable linking is not used. Three design cases are considered. 

Case 1: The external loads are 82.444321 === PPP  kN,  kN, 

 kN, 

4.889674 == PP

6.1334465 == PP 6856.225921 == MM  kN-m, and 5284.338943 == MM  kN-m. 

The section modulus S and the moment of inertia I are related to area A as S = 9A and I = 

75A. Nodal displacement limits of ± 0.0762 m are imposed at nodes 1-3 and 10-12 in 

both x and y directions. 

Case 2: Same as Case 1, except the displacement limits of 0.00127 m at nodes 

1-3 and 10-12 in the x and y directions are imposed. For Cases 1 and 2, only the lower 

limit of 0.0032258 m

±

2 on the cross-sectional areas is imposed. 

Case 3: The external loads are 82.444321 === PPP  kN,  kN, 

 kN and 

1.222474 == PP

74.311365 == PP ( )4to1 0 == iMi . The nonlinear relationships between S, I 

and A given in Eqs. (5.2.2) and (5.2.3) are used. The displacements of nodes 1-3 and 10-

12 in the x and y directions are limited to ± 0.00127 m. 

A uniform initial design of 0.064516 m2 is used for all the formulations. The 

initial displacements are taken as 0.00254 m, and the rotations as 10-3. The initial force 

variables in F-AF2 before scaling are taken as unity. The final solution for Case 1, 

3.070543 m3, is quite similar to that in Khan et al. (1978). For Case 2, the solution is 

6.758287 m3, which is better than 7.595781 m3 reported by Khan et al. (1978). For Case 

3, it is seen that a better local optimum has been found with the alternative formulations. 

Both F-AF1 and F-AF2 gave the same solution as 1.213809 m3. The F-CF stopped at a 

feasible solution of 1.243110 m3, because a very tight stopping criterion could not be 
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satisfied. These solutions are better than those available in the literature; Khan (1984) 

reported 1.282928 and 1.281364 m3, and Sadek (1992) reported 1.270551m3. It is seen 

that different techniques obtain different final designs. The local optimum obtained with 

the alternative formulations is the best one. The SQP method in SNOPT led to better 

optimal solutions. The final cross-sectional areas for all cases are listed in Table 5.5. 

 
 
 
Table 5.3 Final optimal volumes and computing efforts for design examples 

Final Optimal Volumes (m3) CPU (s) Example Problem 
F-CF F-AF1 F-AF2 F-CF F-AF1 F-AF2 

10-member 0.422229 0.422229 0.422229 14.8 12.9 29.8 
Case 1 3.070543 3.070543 3.070543 1.4 2.0 2.5 
Case 2 6.758287 6.758287 6.758287 3.4 4.5 6.3 25-member 
Case 3 1.243110 1.213809 1.213809 38.7 8.5 13.8 

 
 
 
Table 5.4 Numbers of iterations and calls to ANSYS for design examples  

Numbers of Iterations Numbers of Calls to ANSYS Example Problem 
F-CF F-AF1 F-AF2 F-CF F-AF1 F-AF2 

10-member 27 58 105 145+143* 221 435 
Case 1 9 13 16 12+10 22 26 
Case 2 17 38 53 22+20 55 62 25-member 
Case 3 71 57 65 320+318 90 93 

 *Analysis + Sensitivity Analysis 
 
 
 

5.9.3  Solutions with modified cross-sectional 

relationships 

Since that relations in Eqs. (5.2.2) and (5.2.3) are discontinuous when A  = 15 

and A  = 44, the gradient-based optimization methods have difficulty to converge to 

optimum solutions accurately. These equations are modified by adjusting constants in 



www.manaraa.com

 67

them so that the relationships are continuous; for S: , ( )150 6634.1 511.1 ≤≤= AAS

84100077.281 2 += AS 2952.284−  ( )4415 ≤< A , and  

; for I: 

 1475.97761.13 −= AS

( )10044 ≤< A ( )150 592.4 2 ≤≤= AAI , , and ( )4415 10.35638.4 2 ≤<−= AAI

258.2305229.256 −= AI ( 10044 )≤< A . Solutions with the modified cross-sectional 

relationships are listed in Tables 5.6 and 5.7. The convergence properties were improved, 

but due to the discontinuity in the gradient expressions, the convergence still cannot be 

guaranteed. The reported solutions, however, are feasible. The two alternative 

formulations were more efficient than the conventional formulation. 

 
 
 

Table 5.5 Example 2 – Optimal areas for 25-member frame (m2)  

Case 3 Case 3 
No. Case 1 Case 2 

F-CF F-AF1 
/ F-AF2 

 No. Case 1 Case 2 
F-CF F-AF1 

/ F-AF2 
1 0.083259 0.298308 0.018570 0.010006  14 0.079073 0.085511 0.017158 0.019580 
2 0.097819 0.300910 0.013680 0.007146  15 0.003226 0.008082 0.009037 0.003226 
3 0.097719 0.278152 0.011244 0.004233  16 0.034721 0.035142 0.003226 0.004829 
4 0.019824 0.014977 0.003226 0.016210  17 0.122539 0.316319 0.012804 0.013152 
5 0.085233 0.100238 0.015924 0.020245  18 0.003226 0.014882 0.028387 0.003226 
6 0.003226 0.003226 0.003226 0.003226  19 0.078939 0.342469 0.039583 0.016162 
7 0.084281 0.113006 0.022680 0.051749  20 0.003226 0.034681 0.046984 0.003226 
8 0.015009 0.005097 0.028387 0.014879  21 0.076971 0.361973 0.064516 0.018748 
9 0.109497 0.120205 0.031837 0.031429  22 0.003888 0.012421 0.011890 0.013545 
10 0.003226 0.003226 0.003226 0.053870  23 0.003226 0.003226 0.009008 0.046763 
11 0.077104 0.064840 0.016409 0.064516  24 0.003226 0.003226 0.003226 0.003226 
12 0.071192 0.081542 0.030904 0.020581  25 0.029501 0.033969 0.009083 0.003226 
13 0.003226 0.003226 0.021445 0.003226       

 
 
 

Table 5.6 Final optimal volumes and computing efforts with modified cross-sectional 
relationships 

Final Optimal Volumes (m3) CPU (s) Example Problem 
F-CF F-AF1 F-AF2 F-CF F-AF1 F-AF2 

10-member 0.438365 0.438365 0.438359 16.2 7.0 6.8 
25-member Case 3 1.238234 1.208697 1.208697 43.9 10.4 8.3 
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Table 5.7 Numbers of iterations and calls to ANSYS with modified cross-sectional 
relationships 

Numbers of Iterations Numbers of Calls to ANSYS Example Problem 
F-CF F-AF1 F-AF2 F-CF F-AF1 F-AF2 

10-member 47 44 51 177+175* 125 109 
25-member Case 3 73 66 44 367+365 122 83 

*Analysis + Sensitivity Analysis 
 
 
 

5.9.4  Discussions of results 

Two alternative formulations for optimal design of framed structures based on 

simultaneous analysis and design (SAND) concept are presented and implemented with a 

commercial analysis code ANSYS for evaluation. Advantages of the formulations are 

that no structural analyses and sensitivity analyses are needed. Since all functions become 

explicit in terms of the optimization variables, derivatives of the functions with respect to 

the variables are computed explicitly and accurately. However, there are more 

optimization variables and equality constraints in the two alternative formulations, which 

requires careful analysis and use of the sparsity structure of the problem functions for 

efficiency of calculations. Both the formulations worked quite well, and in most cases 

converged to better solutions than those reported in the literature. 

1. Computational effort 

It is seen from Table 5.4 that the alternative formulations generally take more 

iterations to find optimal solutions. This is reasonable since there are more optimization 

variables and constraints. The CPU times of all the examples are also reported in Table 

5.4. It is seen that the computational efforts with all the formulations for the first example 

and Cases 1 and 2 of the second example are quite similar, with the conventional 
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formulation having an edge. However, for Case 3, the alternative formulations are more 

efficient than the conventional formulation. Among the alternative formulations, F-AF2 

generally requires more CPU effort compared to F-AF1. Results with the modified cross-

sectional relationships show the alternative formulations to be more efficient than the F-

CF (Table 5.7). Also F-AF2 is more efficient than F-AF1. Since these are small-scale 

examples, general conclusions about relative efficiency of the formulations cannot be 

drawn. However, it is clear that the alternative formulations work quite well and 

converge to either similar or better optimal solutions. 

2. Scaling of variables and constraints 

An important point to note here is that the alternative formulations include 

different types of variables, which have different orders of magnitudes. Therefore scaling 

of some of the variables is necessary to reduce numerical difficulties. SNOPT has two 

options for automatic scaling: one for linear constraints and variables, and the other for 

all constraints and variables. In addition, manual scaling of the displacement and force 

variables is used.  values are used to normalize the equality constraint in Eqs. (5.5.1) 

and (5.6.1). Normalization of the constraint functions helps in reducing numerical ill-

conditioning. 

jR

3. Role of analysis programs 

As a result of this research, the role of existing analysis programs has become 

clearer with the SAND type formulations. Basically, the pre-and post-processing 

capabilities of the analysis programs can be used directly to evaluate the constraint 

functions. Evaluation of gradients, however, requires member connectivity information 

and member stiffness matrices, and needs to be implemented outside the analysis 
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program. These implementations can become easier if the internal member level 

subroutines and processes of the analysis program are accessible directly through the 

optimization program. It was possible to implement the frame element quantities 

explicitly in the user subroutines to evaluate gradients of the constraints. 

4. Code-specified strength constraints 

In design codes, such as AISC-LRFD, requirements on member stresses or 

buckling are expressed directly in terms of forces (AISC 2001). Therefore, inclusion of 

member forces as optimization variables may be more convenient for design optimization 

of practical framed structures. 

5. Other formulations 

Note that other alternative formulations are also possible. Like trusses, where 

axial forces and stresses are also treated as optimization variables, axial, shear forces and 

bending moments in the member local coordinate system, instead of  in Eq. (5.3.3) in 

the global coordinate system, can be treated as variables. This is similar to the F-AF2. It 

is also possible to include stresses as independent variables. However, evaluation of 

stresses, e.g., the shear and bending stresses, needs cross-sectional dimensions, thus 

requiring different definition of design variables. Moreover, stresses, such as the bending 

stress in a beam-column, are usually not constant throughout the member. Therefore this 

formulation may not be as attractive as the one with nodal forces as variables. 

iQ

It is also important to note that by introducing more variables and constraints in 

the alternative formulations, more information from optimization process is obtained, 

which may be useful in the design process. For example, the Lagrange multipliers for the 

equilibrium constraints at the optimum point can be used to study the benefit of relaxing 
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the constraints, or the penalty associated with tightening them (Arora 2004). Important 

information on how the external load distribution may affect the optimal design can be 

estimated. This can provide design guidance to engineers at the preliminary design stage. 

5.10  Summary 

Two alternative SAND formulations (F-AF1 and F-AF2) and the conventional 

formulation (F-CF) for framed structures were presented, analyzed and implemented with 

a commercial analysis code ANSYS. The second alternate formulation where member 

forces are also treated as optimization variables has not been presented previously in the 

literature. Implementation details for the optimization process were presented. Numerical 

example problems were solved to study performance of the formulations. Such 

comparative evaluation of the formulations has not been carried out previously in the 

literature for framed structures. Based on the present study, following conclusions are 

drawn: 

1. Both F-AF1 and F-AF2 do not explicitly solve the global equilibrium 

equations. F-AF2 does not need to form these equations in terms of 

displacements; however, F-AF1 does need to form them. 

2. Alternative formulations have large numbers of variables and constraints. 

Since all the problem functions are quite sparse, these formulations must 

exploit this sparsity in the optimization process for numerical efficiency and 

for solution of larger scale structures. 

3. Both F-AF1 and F-AF2 work quite well and for most example problems 

considered in this chapter, better optimal solutions were obtained than those 

reported in the literature. For some cases, the alternative formulations were 
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more efficient than the CF, especially with the modified definition of design 

variables. Alternative formulations have potential for practical applications; 

however, they need to be developed further with more realistic definition of 

the design variables for framed structures. 

4. The alternative formulations are easier to implement with the existing analysis 

programs than the F-CF. 

5. For efficient calculations with F-CF, the existing analysis program must have 

restart capability for gradient evaluation. 

6. The design variable representation used in this chapter and the cited literature 

is not appropriate for practical design optimization of framed structures. 
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CHAPTER 6 
APPLICATION TO LARGE-SCALE DESIGN PROBLEMS 

 
 
 

6.1  Introduction 

Three alternative formulations for optimal design of linearly elastic trusses based 

on SAND concept have been studied, analyzed and evaluated in Chapter 4. The 

formulations involved combinations of displacements, member forces and member 

stresses as optimization variables. By introducing more variables into the formulations, 

the forms of the constraints and their derivatives were changed. Since all functions of the 

formulations were explicit in terms of the optimization variables, special design 

sensitivity analysis procedures were no longer needed. Advantages and disadvantages of 

the formulations were delineated. Although the alternative formulations worked well, the 

application was limited to small-scale truss structures.  

In the present chapter, application of the three SAND formulations given in 

Chapter 4 is extended to large-scale truss structures, and major issues such as sparsity, 

storage and implementation of the formulations, are discussed. In large-scale 

applications, gradients of the functions and Hessian of the Lagrangian are quite sparsely 

populated; therefore data storage and manipulation becomes important for numerical 

calculations. Matrix sparsity must be utilized to reduce the storage requirement and 

improve efficiency of the solution process. A more recent sparse SQP algorithm and 

associated software are used to take full advantage of the sparsity structure of the 

alternative formulations. The formulations are evaluated using two relatively large-scale 

truss problems (Wang and Arora 2006a).  
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6.2  Sparsity and Storage Requirements 

Here we analyze the sparsity of the Jacobians and the Hessians of various 

functions, and discuss their data storage requirements. Note that the total storage 

requirement depends on the optimization algorithm used; however, here only the storage 

requirements for the Jacobian and the Hessian matrices are presented. The following 

symbols are used: n = number of members; m = number of degrees of freedom of the 

structure; L = number of loading conditions; d = number of degrees of freedom per 

member (for plane trusses, 4≤d ; for space trusses 6≤d ; for large-scale trusses where 

there are only a few supports, 4 or 6 is a good approximation for d). For simplicity of 

presentation, no variable linking is assumed. 

6.2.1  T-CF  

For T-CF, the gradient ( )1×n  of the cost function (4.3.1), Jacobian matrices 

( ) of the stress constraints (4.3.2) and displacement constraints (4.3.3), 

and the Hessian of the Lagrangian 

mLnnLn ××  and  

( )nn×  are all fully populated. 

6.2.2  T-AF1 

In T-AF1, the optimization variable vector is [ ]TTT rAx = , where r  ( 1×mL ) is 

the displacement vector for all the loading cases. For the objective function in Eq. (4.3.1), 

the gradient vector 
x∂
∂f  ( )( 1)×+ mLn  has n non-zero elements, since 0

r
=

∂
∂f . 

  For the equality constraints in Eq. (4.4.1), ( ) mLmLn
g

×+
∂
∂

x
h  is sparse. For a 

nodal degree of freedom, only a few members are connected to it. There are 
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approximately dnL non-zero elements in 
A

h
∂
∂ g

. In 
r

h
∂
∂ g

, the number of non-zero 

elements can be up to d2nL. For the inequality constraints in Eq. (4.4.2), 0
A

g
=

∂
∂ σ

, since 

the member stresses do not explicitly depend on the member cross-sectional areas, . 

The maximum number of nodal displacements connected to one member is only six. 

Therefore, if the member connectivity information of a large-scale truss structure is 

considered, the number of non-zero elements in 

A

r
g
∂
∂ σ

 is up to dnL. 

It is obvious that the Hessians of the objective function (4.3.1), stress constraints 

(4.4.2), and the simple bound constraints are all null. The equilibrium constraints in Eq. 

(4.4.1) are bilinear forms of  and r ; therefore, A 0
AA

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

×nn

gh2
, 0

rr
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

×mLmL

gh2
, and 

mLn

gh

×⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

rA

2
 is quite sparse. The numbers of non-zero elements in 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

rA

gh2
 and , the 

Hessian of the Lagrangian, are estimated as dnL and 2dnL, respectively. 

H

6.2.3  T-AF2 

For the objective function in Eq. (4.3.1), the gradient vector 
x∂
∂f  

 contains n non-zero elements since (( 1×++ nLmLn ) ) 0
Fr
=

∂
∂

=
∂
∂ ff , where 

, and  ([ ]TTTT FrAx = r 1×mL ) and F  ( 1×nL ) are the displacement and axial force 

vectors for all the loading cases, respectively. 

For the equality constraints in Eq. (4.5.4), 0
A

h
=

∂
∂ g

, 0
r

h
=

∂
∂ g

, and 
F

h
∂
∂ g

 is 
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sparse, since the global equilibrium of forces for one degree of freedom is only related to 

the internal forces of members connected to that degree of freedom. The upper bound on 

the number for non-zero elements is estimated as dnL. For the equality constraints in Eq. 

(4.5.2), 
A
h
∂
∂ e

 and 
F
h
∂
∂ e

 are diagonal matrices, and the numbers of non-zero elements are 

nL. 
r

h
∂
∂ e

 is also quite sparse, with up to dnL non-zero elements. The stress constraints in 

Eq. (4.5.3) can be analyzed similarly. Since the stresses in Eq. (4.5.3) are expressed in 

terms of areas and internal forces of structural members, 0
r

g
=

∂
∂ σ

, and 
A

g
∂
∂ σ

 and 
F

g
∂
∂ σ

 

are diagonal matrices (nL non-zero elements).  

  The Hessians of the objective and the bound constraints are null. Also, the 

equilibrium constraints in Eq. (4.5.4), and the stress constraints in Eq. (4.5.3) are only 

linear in terms of variables , or  and , therefore, their Hessians are null. The 

equality constraints in Eq. (4.5.2) are linear in , and bilinear in  and r ; therefore, the 

number of non-zero elements in 

F A F

F A

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

rA

eh2
 is up to dnL, while all other sub-matrices are 

null. There are up to 2dnL non-zero elements in , the Hessian of the Lagrangian. H

6.2.4  T-AF3 

Similar to T-AF2, there are n non-zero elements in 
x∂
∂f  ( )( )1×++ nLmLn . Note 

that , and σ  ([ ]TTTT σrAx = 1×nL ) is the axial stress vector for all the loading 

cases. 

Since Eq. (4.6.3) does not depend explicitly on the nodal displacements, 
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0
r

h
=

∂
∂ g

. There are up to dnL non-zero elements in 
A
h
∂
∂ g

 and 
σ

h
∂
∂ g

, respectively. For 

the equality constraints in Eq. (4.6.2), 0
A
h

=
∂
∂ e

 and 
σ
h
∂
∂ e

 is a diagonal matrix having nL 

non-zero elements. The number of nonzero elements in 
r

h
∂
∂ e

can be approximated as dnL. 

Since the equality constraints in Eq. (4.6.2) are linear in terms of the variables r  

and , its Hessian is null. Since the equality constraints in Eq. (4.6.3) are bilinear in  

and , all sub-matrices are null except 

σ A

σ
nLn

gh

×⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

σA

2
, which has nL non-zero elements; 

therefore, there are up to 2nL non-zero elements in . H

Note that there are no inequality behavior constraints in the T-AF3, since the 

stress constraints are simple bound constraints. Table 6.1 lists the approximated numbers 

of non-zero elements in the gradient vector, and the Jacobian and Hessian matrices for all 

the four formulations. Note that the numbers of nonzero elements given in Table 6.1 are 

the upper bound estimates. 

For large-scale truss structures, it is interesting to note that the number of non-

zero elements in the Jacobians of constraints and Hessian of the Lagrangian in the 

conventional formulation can be larger than those in the three alternative formulations. T-

AF1 has a larger number of non-zero elements in the Jacobian than T-AF2 and T-AF3. 

Also the numbers of non-zero elements in the Jacobian in T-AF2 and T-AF3 are similar. 

If sparsity of matrices is not considered, it is obvious that all the alternative formulations 

have much larger numbers of elements in the Jacobians than the conventional 

formulation, which means that they require much larger storage and computations than 



www.manaraa.com

 78

the conventional one. It is also seen that the numbers of non-zero elements in the Hessian 

of the Lagrangian function for all the alternative formulations depend on their numbers of 

variables, and therefore L, the number of loading cases. For large-scale structures where 

there are only a few loading cases, the conventional formulation needs more storage for 

the Hessian than the alternative formulations. 

 
 
 

Table 6.1 Approximate numbers of non-zero elements in gradient vector, Jacobian and 
Hessian for different formulations 

Formulation 
Item 

T-CF T-AF1 T-AF2 T-AF3 

Gradient 
Vector 

Objective 
Function (4.3.1) n n 

[n+mL]* 
n 

[n+mL+nL] 
n 

[n+mL+nL] 
Equilibrium 
Constraints  

(4.4.1), (4.5.4) or 
(4.6.3) 

- (d2+d)nL 
[(n+mL)mL] 

dnL 
[(n+mL+nL)mL] 

2dnL 
[(n+mL+nL)mL] 

Equality 
Constraints  

(4.5.2) or (4.6.2) 
- - (d+2)nL 

[(n+mL+nL)nL] 
(d+1)nL 

[(n+mL+nL)nL] 

Stress 
Constraints  

(4.3.2), (4.4.2) or 
(4.5.3) 

n2L dnL 
[(n+mL)nL] 

4nL 
[(n+mL+nL)2nL] - 

Jacobian of 
Constraints 

Displacement 
Constraints 

(4.3.3) 
mnL - - - 

Total of 1st Order Derivatives 
(Gradient Vector & Jacobian) n(nL+mL+1) 

(d2+2d)nL+n 
[(n+mL) 

(nL+mL+1)] 

(2d+6)nL+n 
[(n+mL+nL) 
(3nL+mL+1)] 

(3d+1)nL+n 
[(n+mL+nL) 
(nL+mL+1)] 

Hessian of Lagrangian  n2 2dnL 
[(n+mL)2] 

2dnL 
[(n+mL+nL)2] 

2nL 
[(n+mL+nL)2] 

* The expressions in the brackets give the total number of elements when sparsity is not 
considered. 
 
 
 
From Table 6.1, it can also be seen that the Jacobians and Hessians of the 

alternative formulations are quite sparse; the ratios for the numbers of non-zero elements 

with sparsity and without sparsity are indeed quite small. Note that for other finite 
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elements, such as beams and plates, similar expressions can be readily derived.  

6.3  Implementation 

A suitable optimization method is needed to solve problems of the four 

formulations. In this chapter, an available sparse SQP method in SNOPT (Gill et al. 

2002) is used to solve alternative formulations and the dense SQP method is used to solve 

the conventional formulation. To use the algorithm, cost and constraint functions and 

their gradients need to be calculated. For the alternative formulations, no system of 

equations is solved to determine structural response. Instead, the constraint functions and 

their derivatives are evaluated explicitly external to the analysis software ANSYS (2002) 

using the member stiffness matrices and the member connectivity information. More 

details of implementation with ANSYS are presented in Chapter 4 and Wang and Arora 

(2005a). 

6.3.1  Optimization algorithm for sparse problems  

SNOPT is a general-purpose system for solving large-scale nonlinear 

programming problems involving many variables and constraints. It minimizes a linear or 

nonlinear function subject to bounds on the variables and sparse linear or nonlinear 

constraints. 

1. The SQP iteration 

SNOPT uses an SQP algorithm that calculates the search direction by solving a 

quadratic programming (QP) subproblem. Each QP subproblem minimizes a quadratic 

model of the Lagrangian function subject to linearized constraints. An augmented 

Lagrangian merit function is reduced along the search direction to ensure convergence 

from any starting point. The SQP iterations are called major iterations, and they generate 
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a sequence of iterates that converges to a local minimum point. 

2. The QP solver 

The solution of each QP subproblem is in itself an iterative procedure; iterations 

within the QP solver are called minor iterations. The QP subproblems are solved using a 

reduced-Hessian active-set method that takes advantage of the variables appearing 

linearly in the objective and constraint functions. A null-space method is employed, and a 

Cholesky factorization of the reduced Hessian is maintained. 

3. Large-scale Hessians 

If the number of variables is not too large, SNOPT treats the Hessian as a dense 

matrix and applies the BFGS quasi-Newton updates explicitly with safeguards to 

maintain a positive definite Hessian approximation. Otherwise, SNOPT uses a limited-

memory procedure to update an initial Hessian of the Lagrangian a limited number of 

times only. The method exploits sparsity in the constraint Jacobian, which is specified by 

providing the values and positions of non-zero entries. This means that the program 

requires only the first order information about the problem functions. Although it is not 

difficult to provide second order derivatives for the alternative formulations, their 

calculation adds more computational effort and makes the implementation more complex. 

Thus SNOPT is a good choice for large-scale problems.  If exact Hessians are provided, 

other powerful large-scale sparse NLP codes can also be used, such as the SPRNLP in 

SOCS package (Betts and Frank 1994). 

4. Memory requirement 

As noted earlier, the storage requirement of a numerical code also depends on the 

algorithm used. Unfortunately, it is not easy to precisely quantify SNOPT’s memory 
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requirements. SNOPT computes and updates a sparse LU factorization in which the fill-

ins in the factors depend upon the current basis matrix, which, in turn, depends on the 

path taken to the solution. When the basis is factorized, the LU factors are stored at the 

beginning of large integer and real work arrays. The amount of storage depends on the 

sparsity pattern of the current basis. In subsequent iterations, as the factors are updated, 

additional fill-in is added at the end of the work arrays. A re-factorization causes the 

workspace to be reset to the amount needed for the new factors. Therefore, in SNOPT 

only a minimum of workspace is required for input. The amount of memory for the LU 

factors does depend on the sparsity of the constraint Jacobian. Generally speaking, the 

sparser the Jacobian, the smaller is the memory used by the LU factorization (Gill 2005). 

6.3.2  Overall procedure   

The detailed solution process starts with the definition of objective function, 

optimization variables and constraints. Initial values are assigned to the variables. If it is 

the first iteration, the Jacobian of linear constraints is calculated and stored. Since these 

are constants, they only need to be calculated once. The Jacobian of the nonlinear 

constraints is calculated. After obtaining all the functions and their derivatives explicitly 

at the current optimization variables, a sparse SQP algorithm is used to perform one 

iteration and compute a new point. Note here that the line search calls the finite element 

code again to evaluate nonlinear functions. 

Note that the sparse SQP code separates the linear and nonlinear constraints, and 

this feature is considered in calculations. The code also gives the user the option to define 

linear parts of both the objective function as well as the constraints. In the three 

alternative formulations presented here, the objective function is a linear function of the 
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variables. There are a lot of linear constraints in the alternative formulations, such as Eqs. 

(4.4.2), (4.5.3), (4.5.4) and (4.6.2). Therefore, the Jacobian of these constraints is 

calculated only once. During line search in the SQP algorithm, the finite element code is 

used to evaluate the nonlinear constraint functions only. The Jacobian of linear 

constraints is used directly to calculate the linear function. 

6.4  Numerical Examples 

  Two relatively large-scale truss structures are optimized using the conventional 

and the three alternative formulations. The structural material is steel with Young’s 

modulus E = 68,948 MPa. The allowable stress for each member is 172.375 MPa. 

Multiple loading conditions are considered. No special techniques are used to obtain an 

initial design. In all the formulations, the initial cross-sectional areas are 6.4516E-4 m2 

and the initial displacements are 0.0127 m. In T-AF2 and T-AF3, the initial force and 

stress variables are taken as one. A PC with 2.5 GHz processor and 1 GB RAM is used 

for running the programs and recording relative CPU times. Very severe stopping criteria 

are used to obtain precise optimal solutions. With relaxed stopping criteria, smaller 

computational effort is needed, and solutions close to the true solutions are obtained. 

6.4.1  Example 1 – 35-story space tower  

This 35-story space tower consists of 1262 members and 936 degrees of freedom 

(Adeli and Cheng 1994; Adeli and Soegiarso 1999). The base of the structure is in the X-

Y plane, as shown in Figure 6.1. The entire structure consists of three different sections 

from the top to the bottom. Seventy-two design variables are used to represent the cross-

sectional areas of 72 member groups, employing symmetry of the structure. The 72 

member groups are given in Adeli and Cheng (1994). The lower and upper bounds on the 
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cross-sectional areas are 6.4516E-4 m2 and 6.4516E-2 m2. The loading on the structure 

consists of downward vertical loads and horizontal loads, as follows: 

A. The vertical loads are given as 13.3446 kN at each node in the first section, 

26.6892 kN at each node in the second section, and 40.0338 kN at each node 

in the third section.  

B. The horizontal loads are given as 6.6723 kN in the X direction at each node on 

the left side, 4.4482 kN in the X direction at each node on the right side. 

C. The horizontal loads are given as 4.4482 kN in the Y direction at each node on 

the back side, 4.4482 kN in the Y direction at each node on the front side.  

The displacement constraints are 0.508 m in the X, Y and Z directions for the four 

nodes on the top level (about 1/250 of the height). In Case 1, a combination of all the 

loads A, B and C is applied to the structure. In Case 2, four loading conditions are 

considered, which consist of different combination of the lateral loads and vertical loads 

acting on the structure: 

1. Loading condition A alone. 

2. Loading conditions A and B acting together. 

3. Loading conditions A and C acting together. 

4. Loading conditions A, B and C acting together 

All formulations converge to nearly the same optimum solution (52.0555 m3) for 

Case 1. The final optimal values for all the cross-sectional areas are given in Wang and 

Arora (2006a). Note that Case 1 and Case 2 have the same optimal solutions, which 

implies that the combination of all the loads A, B and C acting together in fact is the 

dominant loading condition in Case 2. 
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        (a)                         (b) 
Figure 6.1 Example 1: (a) Top view of 35-story tower; (b) 35-story tower 

 
 
 

6.4.2  Example 2 – 62-story space tower  

This 62-story space truss tower in Figure 6.2 consisting of 4666 members and 

2940 degrees of freedom is a modified structure from Example 1. There are 238 design 

variables, representing different member groups. The lower and upper bounds on the 

cross-sectional areas are 6.4516E-4 m2 and 0.193548 m2. The loads on the structure are 

as follows, 

A. The vertical loads are given as 26.6892 kN at each node. 

B. The horizontal loads are given as 4.4482 kN in the X direction at each node on 

the left side, 4.4482 kN in the X direction at each node on the right side. 

C. The horizontal loads are given as 4.4482 kN in the Y direction at each node on 
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the back side, 4.4482 kN in the Y direction at each node on the front side. 

 
 
 

 

          (a)                            (b) 
Figure 6.2 Example2: (a) Top view of 62-story tower; (b) 62-story tower 

 
 
 
The displacement constraints are 0.90678 m in the X, Y and Z directions for the 

four nodes on the top level (about 1/250 of the height). In Case 1, a combination of all the 

loads A, B and C is applied to the structure. For all the formulations, the initial values for 

the optimization variables are the same as for Example 1. In Case 2, three loading 

conditions are considered, which consist of different combination of the lateral loads and 

vertical loads acting on the structure:  
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1. Loading condition A alone. 

2. Loading conditions A and B acting together. 

3. Loading conditions A, B and C acting together 

All formulations converge to nearly the same optimum solution (350.486 m3) for 

Case 1. The final optimal values for all the cross-sectional areas are given in Wang and 

Arora (2006a). Note that Case 1 and Case 2 have the same optimal solutions, which 

implies that the combination of all the loads together in fact is the dominant loading 

condition in Case 2. 

6.5  Discussion of Results 

Table 6.2 shows the comparison of sizes for the four formulations for the design 

examples. The largest problem has 23056 optimization variables and 50814 behavior 

constraints. Table 6.3 lists the estimated numbers of non-zero elements that need to be 

stored and used in SNOPT. The table also shows the number of non-zero elements that 

need to be stored and used if sparsity of the functions is not considered. It is seen that the 

sparsity of matrices needs to be utilized to solve large-scale design problems efficiently. 

If the sparsity of matrices is not considered, a standard PC may not have enough memory 

for the algorithm. Therefore, it is seen that the consideration of sparsity of the 

formulations is vital to their success. It is interesting to note that the conventional 

formulation actually requires more storage as compared to the alternative formulations. In 

order to provide a comparison of memory usage, approximate workspace requirements of 

SNOPT for all the formulations are recorded. For example, the memory usage reported 

by the operating system for Case 2 of the 35-story tower for the four formulations are in a 

range of (30-38) MB, (20-33) MB, (18-23) MB, and (12-15) MB, respectively. 
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Table 6.2 Number of variables and behavior constraints for different formulations   

Formulation Example Problem 
T-CF  T-AF1 T-AF2 T-AF3 

Case 1 72/1274 1008/2198 2270/4722 2270/2198 35-story Case 2 72/5096 3816/8792 8864/18888 8864/8792 
Case 1 238/4678 3178/7606 7844/16938 7844/7606 62-story Case 2 238/14034 9058/22818 23056/50814 23056/22818 

 
 
 

Table 6.3 Numbers of non-zero Jacobian elements for design examples 

Formulation Example Problem 
T-CF  T-AF1 T-AF2 T-AF3 

Case 1 9.2×104 6.1×104

[2.2×106]* 
2.3×104

[1.1×107] 
2.4×104

[5.0×106] 35-story 
Case 2 3.7×105 2.4×105

[3.4×107] 
9.1×104

[1.7×108] 
9.6×104

[7.8×107] 

Case 1 1.1×106 2.2×105

[2.4×107] 
8.4×104

[1.3×108] 
8.9×104

[6.0×107] 62-story 
Case 2 3.3×106 6.7×105

[2.1×108] 
2.5×105

[1.2×109] 
2.7×105

[5.3×108] 
*The numbers in the brackets give the total number of elements when sparsity is not considered. 
 
 
 
All the formulations worked well and converged to the same optimal solutions for 

four design cases, even with a bad starting point. Table 6.4 lists the numbers of calls to 

ANSYS and Table 6.5 presents the numbers of iterations for the example problems. All 

the alternative formulations consume more iterations compared to the conventional 

formulation, since they have more variables. These numbers are quite reasonable for 

problems of this size. Table 6.6 shows the CPU times and the average CPU/iteration for 

all the design cases. It is seen that in the conventional formulation, the computational 

effort is scalable in terms of the problem size. For example, the CPU times needed are 
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1009 s for one loading case and 4003 s for four loading cases in Example 1, and 45473 s 

for one loading case and 125264 s for three loading cases in Example 2. This trend is not 

seen with the alternative formulations. 

 
 
 

Table 6.4 Numbers of calls to ANSYS for design examples   

Formulation Example Problem 
T-CF  T-AF1 T-AF2 T-AF3 

Case 1 173 + 171* 308 191 352 35-story Case 2 172 + 170 495 255 322 
Case 1 239 + 237 708 397 302 62-story Case 2 236 + 234 2531 239 304 

*Analysis + Sensitivity Analysis 
 
 
 

Table 6.5 Numbers of iterations for design examples   

Formulation Example Problem 
T-CF  T-AF1 T-AF2 T-AF3 

Case 1 81 209 166 263 35-story Case 2 82 313 221 179 
Case 1 114 509 331 260 62-story Case 2 114 1010 205 255 

 
 
 
It is seen that when the problem size is relatively small, the computational efforts 

for the three alternative formulations are smaller than the conventional formulation, with 

T-AF2 and T-AF3 requiring less CPU effort than T-AF1. This is the same conclusion as 

the one reached by Chapter 4 and Wang and Arora (2005a). However, for the largest 

example (Case 2 of Example 2), the conventional formulation uses less CPU time than all 

the alternative formulations, although the CPU/iteration is smaller for the alternative 

formulations. The CPU/iteration for the alternative formulations shows some interesting 
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trend. As the size of the optimization problem increases, the CPU/iteration becomes 

larger for T-AF2 and T-AF3 compared to T-AF1. Apparently, the QP solver for 

calculation of the search direction becomes less efficient as the numbers of variables and 

constraints increase. Therefore, better QP solvers for large sparse problems need to be 

developed. 

 
 
 

Table 6.6 Computing efforts for different formulations (CPU, s) 

Formulation Example Problem 
T-CF  T-AF1 T-AF2 T-AF3 

Case 1 1009 (13)* 551 (3) 305 (2) 459 (2) 35-story Case 2 4003 (50) 5526 (18) 2141 (10) 3862 (22) 
Case 1 45473 (399) 30989 (61) 29010 (88) 25891 (100) 62-story Case 2 125264 (1099) 252360 (250) 136834 (668) 217182 (852) 

*Average CPU/iteration 
 
 
 

Table 6.7 Wall-clock times for different formulations (s)   

Formulation Example Problem 
T-CF  T-AF1 T-AF2 T-AF3 

Case 1 8497 3135 1886 3359 35-story Case 2 26921 11161 5672 7335 
Case 1 142609 54053 41611 35407 62-story Case 2 366448 344108 144931 227530 

 
 
 
It is also important to note that the wall-clock times with all the formulations are 

much larger than the CPU times (refer to Table 6.7). This is because ANSYS is used as 

an independent program executed on a local area network. Thus, there is considerable 

overhead time in the use of a commercial analysis program over the local area network. If 

wall-clock times are used for comparison, the conventional formulation requires more 
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time than the alternative formulations for all the design cases, even for the largest 

example. 

In the alternative SAND formulations, the optimization problem is very large 

because there are more variables. The size of the problem becomes still larger when the 

structure is subjected to multiple loading conditions, and it can easily exceed the capacity 

of current personal computers. However, note that for large-scale applications, the SAND 

formulations require less memory for the Jacobian and Hessian matrices, and they avoid 

repeated analyses of the structure. T-AF2 and T-AF3 with forces and stresses as variables 

have more optimization variables; however, they are more efficient than T-AF1. The 

reason is that they have many linear constraints, which are more efficient to treat in the 

solution process. 

6.6  Summary 

Three alternative formulations for structural optimization were applied to the 

design of large-scale linearly elastic trusses. Basic structures of the Jacobians of the 

constraints associated with the formulations were studied and implemented with an 

existing sparse NLP solver. It is concluded that the exploitation of the sparsity properties 

of the formulations is critical for storage of data, computational efficiency, and 

furthermore, success of the alternative formulations. T-AF2 and T-AF3 with forces and 

stresses as additional optimization variables outperform T-AF1, where only 

displacements are treated as additional optimization variables. In terms of CPU times, the 

SAND formulations outperform the conventional formulation, except for the largest 

example problem. When the problem size is too large, the sparse QP subproblem solver 

becomes slow to converge, resulting in more computational effort than the conventional 
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formulation. However, in terms of the wall-clock time or the CPU time/iteration, the 

SAND formulations are more efficient than the conventional formulation, since the 

number of call to ANSYS is much smaller. 

SAND represents a fundamental shift in the way analysis and design problems are 

currently treated. Further research is suggested to fully study and utilize sparse features of 

the alternative formulations for large and more complex problems. The exploitation of 

the sparsity, decomposition to reduce sizes, efficient solution of sparse QP subproblems 

and parallel algorithms for the alternative SAND formulations need to be further studied, 

developed and combined for much broader practical applications of these formulations. 
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CHAPTER 7 
TRANSIENT DYNAMIC RESPONSE OPTIMIZATION I 

 
 
 

7.1  Introduction 

Transient dynamic response optimization problems are difficult to solve because 

they involve integration of linear or nonlinear differential-algebraic equations (DAEs) or 

just differential equations (DEs). The most common approach for optimization of such 

problems has been the one where only the design variables are treated as optimization 

variables (Afimiwala and Mayne 1974; Haug and Arora 1979; Hsieh and Arora 1984; 

Grandhi and Haftka 1986; Lim and Arora 1987; Tseng and Arora 1989; Kim and Choi 

1998; Arora 1999). All other response quantities, such as displacements, velocities, and 

accelerations, are treated as implicit functions of the design variables. Therefore, in the 

optimization process, a system of DEs is integrated to obtain the response (state) 

variables and to calculate values of various functions of the optimization problem. Then 

an optimization algorithm is used to update the design. This nested process of solution of 

DEs and design update, also called the conventional approach, is repeated until a 

stopping criterion is satisfied. This optimization process, however, is difficult to use in 

practice. The main difficulty is that the response quantities are implicit functions of the 

design variables, which require special methods for their gradient evaluation, such as the 

direct differentiation method or the adjoint variable method (Arora 1999). These methods 

require integration of additional DEs. Unless finite difference method is used to calculate 

the gradients, it is difficult to optimize systems with any existing simulation software, 

especially for multidisciplinary problems requiring use of different discipline-specific 
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analysis software. 

Another interesting approach for transient dynamic optimization is the so-called 

equivalent static load method (Kang et al. 2001; Choi and Park 2002; Kang et al. 2005), 

where the problem is transferred to a quasi-static problem. The idea is to find a static load 

set that can generate the same displacement field as that with the dynamic load at certain 

times. Therefore, multiple equivalent static load sets obtained at all the time intervals can 

represent various states of the structure under the dynamic load. However, with this 

approach, DEs must still be integrated a number of times and design sensitivity analysis 

must also be performed for the resulting static problems.   

To alleviate the difficulties mentioned above, a fundamental shift in the direction 

of research on optimization of dynamic systems is needed. It will be useful to develop 

alternative formulations that do not require explicit solution of DEs at each iteration and 

there is no need for special design sensitivity analysis procedures. By formulating the 

optimization problem in a mixed space of design and state variables, these two objectives 

can be met. Thus the purpose of this chapter is to expand upon this idea by proposing 

alternative formulations for optimization of transient dynamic systems, and evaluate 

these using extensive numerical experiments. Various state variables, such as the 

displacements, velocities and accelerations, are treated as independent variables in the 

formulations. The equations of motion become equality constraints. All constraints of the 

problem in the proposed formulations are expressed explicitly in terms of the 

optimization variables. Therefore their gradient evaluations become quite simple. 

Although the resulting optimization problem is large, it is quite sparse which can be 

solved using sparse nonlinear programming (NLP) algorithms. Two numerical examples 
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are used to study the alternative approaches and compare solutions with the conventional 

approach. Advantages and disadvantages of the formulations are also discussed (Wang 

and Arora 2005b). 

This idea of using state and design variables simultaneously in the optimization 

process has been used in the literature for the static response structural optimization 

problems. This is known as SAND (Haftka 1985; Kirsch and Rozvany 1994; Orozco and 

Ghattas 1992a; Arora and Wang 2005). A similar approach has also been used to solve 

optimal control problems (von Stryk and Bulirsch 1992; Betts and Huffman 1993; 

Barclay et al. 1997; Cervantes and Biegler 1998; Betts 1998, 2000; Cervantes et al. 

2000), which is called the direct collocation/transcription method. The main applications 

of the approach are for aerospace trajectory optimization (Betts and Huffman 1993; Betts 

2000), and chemical process engineering (Cervantes and Biegler 1998). The basic idea is 

to discretize the system of first order DEs, and define finite dimensional approximations 

for the state and control variables. The discretized state equations are treated as equality 

constraints in the optimization process. The collocation conditions are determined using 

an implicit formula, such as the implicit Runge-Kutta method, or some polynomial 

interpolations. Bounds on the state variables are usually enforced at the time grid points, 

or at all the collocation points in the time domain. The optimization variables are the state 

variables and their first derivatives at time-grid points, the control variables, and the 

algebraic variables at all the collocation points. The resulting NLP is usually solved by a 

sequential quadratic programming (SQP) method (Cervantes and Biegler 1998; Betts 

2000) or an interior point method (Cervantes et al. 2000), which exploit the sparse and 

block features of the problem structure. Some detailed formulations for optimal control 
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problems can be found in Barclay et al. (1997) and Betts (1998). 

7.2  Dynamic Response Optimization Problem 

The basic dynamic response optimization problem is to determine design 

parameters related to stiffness and damping properties of the dynamic system, to achieve 

certain goals (e.g., minimization of a cost function, such as the maximum displacement or 

acceleration) while satisfying all the performance requirements. In this section, a general 

problem for optimization of dynamic systems is presented. In the remaining sections, the 

conventional and alternative formulations, and numerical results for two example 

problems are presented and discussed. 

7.2.1  Simulation model  

Let  be an m dimensional vector to represent the design variables for the 

problem, which may include the sizing variables of a structure; or directly mass, stiffness, 

and damping parameters of the dynamic system.  is a d dimensional vector that 

represents the state variables for the problem. The equation of motion for a linear system 

to determine the state variables can be written as follows (nonlinear problem can be 

treated similarly as seen later in an example problem): 

x

z

( ) ( ) ( ) ( ) ( ) ( ) ( )tttt ,xFzxΚzxCzxM =++ &&&  (7.2.1) 

with the initial conditions ( ) 00 zz = , and ( ) 00 zz && = ; ,  and M C K  represent ( dd )×  the 

generalized mass, damping and stiffness matrices; and ( )t,xF  is a  generalized force 

vector. Note that Eq. (7.2.1) cannot be solved in a closed form to obtain explicit 

functional forms for  in terms of the design variables , which causes 

difficulty in the optimization process. The equations of motion can be solved directly in 

1×d

zzz  and   , &&& x
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the second order form (Bathe 1982; Chopra 2001) in Eq. (7.2.1), or by converting it to a 

first order form, the so-called the state space representation of Eq. (7.2.1), as: 

( ) ( )( ) ( ) ( ) ( )ttttt , , , xFyxΚxyfy +==&  (7.2.2) 

where , [ ]zzy &=T K  is the system matrix ( )dd 22 × , and ( )t,xF  is  vector given 

as:  

12 ×d

( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢
⎣

⎡
−−

= −− xCxMxKxM
I0

xΚ 11 ; ( ) ( ) ( )⎥⎦
⎤

⎢
⎣

⎡
= − t,

t,
xFxM

0
xF 1  (7.2.3) 

in which  is a  identity matrix. It is worthwhile to examine both the second and the 

first order forms of the dynamics equations. 

I dd ×

7.2.2  Cost function and constraints 

In general, a cost functional includes the state and design variables, as 

( ) ( )dtthTcJ T  ,,,,, 0 00 ∫+= zzzxx &&&  (7.2.4) 

where T is the total time interval considered. The objective J may be the cost of the 

system, performance measures, or any other function of the state variables. A time-

dependent functional, such as maximum acceleration or displacement, can also be treated 

as will be seen later in the example problems. Design requirements are imposed mostly as 

inequality constraints (equality constraints can also be treated). One type of constraints 

that involves integration over time as 

( ) ( ) 0 ,,,,, 0 ≤∫+= dttT T zzzxhxcg &&&  (7.2.5) 

The other type of constraints is the so-called point-wise constraint, which needs to be 

satisfied at each point of the entire time interval [ ]Tt ,0∈ :  

( ) 0 , , ,, ≤tzzzxg &&&  (7.2.6) 
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These constraints may include the following displacement, velocity and acceleration 

constraints, and the time-independent constraints on the design variables: 

UL zzz ≤≤ ;  ;   (7.2.7) UL zzz &&& ≤≤ UL zzz &&&&&& ≤≤

UL xxx ≤≤    (7.2.8) 

where  and  are the lower and upper bounds for the 

generalized displacements, velocities, accelerations and design variables, respectively. 

Any other design requirements may also be included in Eqs. (7.2.5) and (7.2.6). 

LLLL ,,, xzzz    &&& UUUU ,, xzzz   , &&&

7.3  Conventional Formulation – Only Design Variables 

as Optimization Variables  

In the conventional formulation, optimization is carried out only in the space of 

design variables. This is the most common way to formulate the transient dynamic 

response optimization problems (Arora 1999) and it includes the minimum number of 

optimization variables. The total time interval [ ]T ,0  is divided into N intervals (N +1 

time grid points), and the equations of motion are integrated to determine the system 

response and thus calculate various functions of the optimization problem. The 

optimization problem is to find  to minimize the cost functional of Eq. (7.2.4) subject to 

the constraints of Eqs. (7.2.5), (7.2.6) and (7.2.8). 

x

It is important to note that five treatments of the point-wise constraints in Eq. 

(7.2.6) have been presented and evaluated in the literature (Tseng and Arora 1989; Arora 

1999). These include the equivalent integral and critical point methods as well as the 

conventional approach where the constraints are imposed at each time grid point. It has 

been concluded that the imposition of constraints at each time grid point is quite 
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effective. The reason is that although the number of constraints becomes very large with 

this approach, the number of active constraints is quite small (during the iterative process 

and at the optimum). Therefore the approach works quite well, and is quite easy to 

implement for numerical calculations. The equivalent integral and critical point constraint 

methods appear to be quite attractive as well because the number of constraints remains 

quite small. However, there are some theoretical difficulties with them causing the 

optimization process to fail sometimes (Hsieh and Arora 1984; Tseng and Arora 1989; 

Arora 1999). These two methods were implemented for some of the examples presented 

later. As expected the performance of the equivalent integral approach was not good as 

compared to the constraint imposed at each time point (conventional approach) in terms 

of the computational effort as well as convergence to the optimum point. Therefore, in 

this study, results are presented with only the approach where the constraints are imposed 

at each time grid point. 

Since the constraint functions in this formulation are implicit functions of the 

design variables, implicit differentiation procedures need to be used to evaluate the 

gradients. Certainly, the finite difference methods can be used to evaluate the gradients, 

since they are quite easy to implement. However, accuracy of the gradients is 

questionable which may affect convergence to the optimal solution. Analytically, the 

direct differentiation or the adjoint variable method can be used (Hsieh and Arora 1984; 

Arora 1999). These procedures are difficult to implement with an existing simulation 

code, because the code needs to be recalled to solve for displacement, velocity and 

acceleration gradients or the adjoint vectors. Then, the gradients of the response 

functionals need to be assembled using the adjoint vectors or the displacement, velocity 
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and acceleration gradients. This is one of the main drawbacks of the conventional 

optimization formulation. In the present work, both the finite difference and direct 

differentiation approaches were used to solve the example problems. Both the methods 

worked well and converged to the same solutions. However, only the results requiring 

least amount of computational effort are reported. 

7.4  Alternate Formulation 1 – Design Variables and 

Displacements as Optimization Variables  

In this formulation, the displacements ( )tz  are also treated as optimization 

variables. Thus the problem is to determine  and x ( )tz  to minimize the cost functional of 

Eq. (7.2.4) subject to the constraints of Eqs. (7.2.1), (7.2.5), (7.2.6) and (7.2.8). In the 

numerical solution process, Eqs. (7.2.1) and (7.2.6) are discretized into N+1 equations in 

the entire time interval [ , and they represent in fact the constraints that need to be 

satisfied at each time grid point, as 

]T,0

( ) ( ) ( ) ( )iiii t, xFzxΚzxCzxM =++ &&& ,        i = 0, N (7.4.1) 

( 0zzzxg ≤iiiii t, ,,, &&& ) ,       i = 0, N   (7.4.2) 

The optimization variables now become  and  (i = -1, N+1). Note that Eqs. (7.4.1) 

are the equality constraints between the variables representing the equations of motion for 

the system. It is obvious that in order to make Eqs. (7.4.1) and (7.4.2) explicit with 

respect to the optimization variables  and , the velocity and acceleration vectors  

and  need to be written explicitly in terms of z . One simple way is to use the finite 

difference approximations as 

x iz

x z z&

z&&
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( )
t

t ii
iii ∆

−
== −+

2
11 zzzz && ,        i = 0, N (7.4.3) 

( ) 2
11 2

t
t iii

iii ∆
+−

== −+ zzzzz &&&& ,       i = 0, N   (7.4.4) 

where  is the time interval defined as t∆ NTt /=∆ . Thus in terms of the variables  and 

, all the problem functions have an explicit form. Therefore special design sensitivity 

analysis procedures are not needed to evaluate the gradients. Even the equations of 

motion are not integrated, but imposed as equality constraints in the optimization process. 

These equations may not be satisfied at each optimization iteration. They are, however, 

satisfied at the final solution. Note that Eqs. (7.4.1) are linear in  if the original DEs are 

linear, and nonlinear if they are nonlinear.  

x

iz

iz

Note also that ideas similar to direct collocation can also be used here (Betts 

1998); however, they usually involve more complicated relationships among the state 

variables as equality constraints. That will make the gradient evaluation as well as 

computer implementation more complex. These are further studied in Chapter 8. 

7.5  Alternate Formulation 2 – Design Variables, 

Displacements and Velocities as Optimization 

Variables  

In alternate formulation 1, all functions needed to be expressed in terms of the 

design variables and displacements for numerical calculations. However, if the velocities 

or accelerations are also treated as variables, it will give choice of expressing some 

constraints (e.g., the equations of motion) in terms of velocities or accelerations, to 

simplify their expressions. This may lead to simpler gradient evaluation and computer 
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implementation. To evaluate this idea, velocities and accelerations are also treated as 

variables in this and the next subsection. 

If displacements and velocities are treated as optimization variables, accelerations 

can be expressed in terms of the velocities. Therefore, another explicit form can be 

obtained. The problem is to determine ,  and  to minimize the cost function of Eq. 

(7.2.4), subject to Eqs. (7.2.1), (7.2.5), (7.2.6) and (7.2.8). The optimization variables in 

this formulation are , , and  (i = -1, N+1), and this is denoted as Form 1 of the 

formulation. In fact, this form is similar to the state space representation. If the state 

space variables  in Eq. (7.2.2), i.e., displacements  and velocities  are treated as 

variables in the optimization formulation, the problem functions become explicit in terms 

of these variables. The problem is to determine  and  to minimize the cost function of 

Eq. (7.2.4), subject to the first order DEs in Eq. (7.2.2), and the point-wise constraints  

x z z&

x iz iz&

y z z&

x y

( ) 0yyxg ≤t , ,, &  (7.5.1) 

Note that Eqs. (7.2.2) and (7.5.1) are discretized into N+1 equations in the entire time 

interval [ , and they in fact represent the system of constraints as follows: ]T,0

( ) ( iiii t,xFyxΚy +=& )

)

,        i = 0, N (7.5.2) 

( 0yyxg ≤iiii t,  , , & ,       i = 0, N (7.5.3) 

The optimization variables for this formulation are x  and  (i = -1, N+1). In order to 

make Eqs. (7.5.2) and (7.5.3) explicit with respect to the optimization variables  and 

iy

x y , 

vector  needs to be written explicitly in terms of  and y& x y . Using the finite difference 

approximations, we get 
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( )
t

t ii
iii ∆

−
== −+

2
11 yyyy && ,       i = 0, N (7.5.4) 

Note that Eq. (7.5.4) is not as accurate as Eq. (7.4.4), since the error involved here is 

( )( )22 tO ∆  (Atkinson 1988), which is larger than that for Eq. (7.4.4). In order to obtain an 

approximation of the accelerations with higher accuracy, the velocities at the middle of 

each time step, 
2

12 −iz&  (i = 0, N+1) are introduced as additional variables, and this is called 

Form 2 of the formulation. The accelerations are therefore expressed as, 

t

ii

i ∆

−
=

−+
2

12
2

12 zz
z

&&
&& ,       i = 0, N (7.5.5) 

The optimization variables now are x ,  (i = -1, N+1),  (i = 0, N), and iz iz&
2

12 −iz&  (i 

= 0, N+1). More equality constraints are needed due to the introduction of additional 

variables. From the finite difference approximation, the velocities are expressed as: 

t
ii

i ∆
−

= −+

2
11 zzz& ,       i = 0, N (7.5.6) 

t
ii

i
∆
−

= −
−

1

2
12

zzz& ,       i = 0, N+1 (7.5.7) 

7.6  Alternate Formulation 3 – Design Variables, 

Displacements, Velocities and Accelerations as 

Optimization Variables  

From Eq. (7.2.1), it can be seen that other alternative formulations are possible. If 

the displacements z , velocities  and accelerations  are treated as variables 

simultaneously, another explicit formulation can be obtained. Since the state variables are 

related to each other, more equality constraints need to be imposed in the formulation, 

z& z&&
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such as Eqs. (7.4.3) and (7.4.4). 

The problem is to determine x , ,  and  to minimize the cost function of Eq. 

(7.2.4), subject to Eqs. (7.2.1), (7.2.5), (7.2.6), and (7.2.8). After discretization, the 

optimization variables in this formulation are ,  (i = -1, N+1),  and  (i = 0, N). 

z z& z&&

x iz iz& iz&&

7.7  Evaluation of Formulations  

Table 7.1 shows the sizes of all the formulations. The following symbols are used 

in the table: m = number of elements in the design variable vector ; N = number of time 

intervals (number of grid points = N + 1); e = number of constraints in g ; d = number of 

DEs in Eq. (7.2.1), or the dimension of vector . Note that some of the inequality 

constraints  in the alternative formulations 1-3 may become simple bounds on 

variables, as seen later in the examples. 

x

z

ig

 
 
 

Table 7.1 Number of variables and constraints for different formulations  

Item Conventional Alternate 1 Alternate 2 Alternate 3 

No. of Variables m m+d(N+3) m+d(2N+6) or 
m+d(3N+6) m+d(3N+5) 

No. of Equality 
Constraints 0 d(N+1) d(2N+2) or 

d(3N+4) d(3N+3) 

No. of Inequality 
Constraints e(N+1) e(N+1) e(N+1)  e(N+1) 

 
 
 
It is noted here that since the point-wise constraint is imposed only at the grid 

points, it is possible that the constraint could be violated between the grid points. This is 

the usual difficulty whenever a continuum problem is discretized for numerical 

calculations. In the present case, if the system response is relatively smoother and slowly 
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varying, the constraint violation, if any, between the grid points will be quite small. When 

the response is varying rapidly, a smaller grid size can reduce the possibility of violation 

between the grid points at the expense of additional calculations. 

In the alternative formulations, since the objective and constraint functions are all 

explicit in terms of the optimization variables, the gradients of functions can be obtained 

easily by direct differentiation. Note that the alternative formulations do not require the 

equations of motion in Eq. (7.2.1) to be satisfied exactly at each optimization iteration. 

They need to be satisfied only at the final solution point. This has an advantage for the 

alternative formulations because they avoid possible instabilities or failure of the 

integration process for the equations of motion. Also, unnecessary simulations of the 

system are avoided at intermediate designs, where it might be difficult to obtain a 

solution. However it can be seen that the number of variables and constraints becomes 

very large in the alternative formulations, and the size depends on the number of grid 

points. Large-scale NLP solution algorithms with sparse matrix capabilities are required 

to solve the alternative formulations efficiently. Some aspects of the alternative 

formulations will be discussed in details in Section 7.8, when particular design problems 

are presented.  

7.8  Numerical Examples 

For numerical evaluation, the conventional and three alternative formulations 

presented in previous sections are applied to solve two examples problems. The 

alternative formulations are solved using the sparse SQP algorithm in SNOPT (Gill et al. 

2002), while the conventional formulation is solved using the dense SQP solver in 

SNOPT since the problem is dense. SNOPT has an option to compute derivatives using a 
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combined forward and central difference method. This option is also used to solve the 

example problems with the conventional formulation. Results of the examples are listed 

and compared. Advantages and disadvantages of the formulations are discussed. 

For the conventional formulation, two subroutines in the IMSL mathematical 

library (1997) are used to integrate the first order DEs in all the examples. These are 

DIVPRK (Runge-Kutta-Verner method), and DIVPAG (Adams-Moulton method or 

backward differentiation method). These are very good methods that can also solve stiff 

DEs (DIVPAG) which are encountered in some mechanical system applications. All the 

foregoing three methods are tried for the example problems presented here and only the 

most efficient one is selected for optimization. It is noted that these methods 

automatically adjust the step size internally to maintain stability and accuracy of the 

solution process. Therefore the computational effort to integrate the equations of motion 

and sensitivity equations can be substantial. In contrast, the alternative formulations use a 

fixed time grid in the solution process. To have a fairer comparison of the performance of 

different formulations, a fixed time step option was tried for integration of the DEs. In 

some cases, the integration procedure failed to converge causing the optimization process 

to terminate prematurely. Therefore, it is concluded that a reliable and robust DE 

integrator is crucial for success of the conventional formulation. In addition, the 

governing equations are sometimes stiff and include algebraic equations as side 

constraints. Therefore it is better to use more general approaches for integration of 

equations of motion. For all the results reported later with the conventional formulation, 

the time step size was allowed to be adjusted automatically within the integration routine. 

A PC with 2.53 GHz processor and 512 MB RAM is used for running the 
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programs and recording the CPU times. Each solution case of the example problems was 

run several times with different starting point and the shortest time was recorded. Also 

any differences in the solution points, if any, were noted to observe global optimality of 

the solution. 

7.8.1  Example 1 – 1-DOF impact absorber  

 
 
 

M

mxb &

nxk

x  
Figure 7.1 Example 1: 1-DOF impact absorber configuration 

 
 
 
The problem is to design a nonlinear shock absorber with nth order stiffness and 

mth order damping (Afimiwala and Mayne 1974). The objective is to minimize the 

maximum acceleration of the attached mass during the transient response. The equation 

of motion is given as 

0sgnsgn =++ xxkxxbxM nm
&&&&  (7.8.1) 

with initial conditions as ( ) 00 =x   and ( ) Vx =0& , and yyy /sgn = . Equation (7.8.1) is 

normalized by considering transformation of the displacement and the time parameter as 

 and LxX /= LVt /=τ , where L is the maximum displacement of the mass during the 

resulting transient motion. Therefore, the normalized equation of motion is 
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0sgnsgn =++ XXKXXBX nm &&&&  (7.8.2) 

where the “over dots” now represent differentiation with respect to τ ; the initial 

conditions become  and ( ) 00 =X ( ) 10 =X& ; and the two new parameters are defined as 

M
bLVB

m 2−

= ; 2

1

MV
kLK

n+

=  (7.8.3) 

The optimal design problem is to find B and K, representing the mass, stiffness 

and damping properties of the system to 

max
  minimize X

B,K
&&   subject to  1max ≤X  (7.8.4) 

By introducing an artificial variable E and discretizing the normalized time 

interval T of 2 ( 20 ≤≤ τ ) into N steps ( NTt /=∆ ), the conventional formulation for the 

optimal design problem is to find three variables E, B, and K to minimize E  subject to 

EX i ≤&& ;    i = 0, N (7.8.5) 

1≤iX ;    i = 0, N (7.8.6) 

The numbers of optimization variables, constraints (excluding simple bound 

constraints) and non-zero elements in the constraint Jacobian are listed in Table 7.2. The 

initial values of the variables , and E are taken as unity for the conventional 

formulation and all the three alternative formulations. No special techniques are used to 

find the starting values of other variables for the three alternative formulations. The 

starting values of displacements, velocities and accelerations are all taken as unity. Note 

also that the inequality constraints in Eq. (7.8.6) become simple bound constraints in the 

alternative formulations that can be treated efficiently in the optimization algorithms. 

KB  ,

The optimum solutions obtained by all the formulations are quite similar to those 
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obtained in the literature (Afimiwala and Mayne 1974) and are plotted in Figure 7.2. 

Figures 7.2 (a) and (b) show the optimum values for non-dimensional damping and 

stiffness parameters B and K for various values of m and n between zero and four. Figure 

2 (c) shows the maximum acceleration magnitude 
max

 X&&
 
for the optimum values of B 

and K. The optimum solutions corresponding to the nonlinear system with m and n taken 

as 2 and the number of grid points as 50 are listed in Table 7.3. 

 
 
 

Table 7.2 Sizes of design example 1 

Item Conventional Alternate 1 Alternate 2 Alternate 3 
No. of Variables 3 N+5 2N+7 3N+7 

No. of Constraints 2N+2 3N+3 4N+4 5N+4 
No. of Non-zero Elements 

in Jacobian 6N+6 13N+7 15N+18 16N+13 

Total No. of Elements in 
Jacobian 6N+6 3N2+18N+15 8N2+36N+28 15N2+47N+28 

 
 
 

m ax
 X&&
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Figure 7.2 Example 1: Optimum values for (a) non-dimensional damping B, and (b) 
stiffness K; (c) maximum acceleration magnitude 

max
 X&&  using optimum B and K 
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7.8.2  Example 2 – 5-DOF vehicle suspension system  

A five degree of freedom vehicle suspension system (Haug and Arora 1979) is 

shown in Figure 7.3 (the state variables  are defined there). The objective is to 

minimize the extreme acceleration of the driver’s seat (mass ) for a variety of vehicle 

speeds and road conditions defined by the functions 

iz

1m

( )tf1  and ( )tf2 . The design variables 

are the spring constants , , and , and the damping constants , , and . The 

motion of the vehicle is also constrained so that the relative displacements between the 

chassis and the driver’s seat, the chassis and the front and rear axles are within given 

limits. This is the design problem 1 of Example 5.3 on pages 348-354 in Haug and Arora 

(1979). The equations of motion for the system are given there. 

1k 2k 3k 1c 2c 3c
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Figure 7.3 Example 2: 5-DOF vehicle suspension system 

 
 
 
The optimum design problem is to find , , , , , and  that minimize 1k 2k 3k 1c 2c 3c

[ ]
( )tz

Tt 1,0
max &&
∈

 for the given road profile 1 (Haug and Arora 1979). By introducing an 
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artificial variable E , the reformulated problem is to minimize E  subject to the state 

equations, and the following inequality constraints in the time interval [ ]: T,0

( ) Etz ≤1&&  (7.8.7) 

( ) ( ) ( )  0    ,2
12 132 TttztzLtz ≤≤≤−+  (7.8.8) 

( ) ( ) ( ) TttzLtztz ≤≤≤−− 0    ,5
3 324  (7.8.9) 

( ) ( ) ( )    0    ,5
3

2
325 TttzLtztz ≤≤≤+−  (7.8.10) 

( ) ( )  0    ,214 Tttftz ≤≤≤−  (7.8.11) 

( ) ( ) Tttftz ≤≤≤− 0    ,225  (7.8.12) 

and simple bounds on the design variables. According to the literature (Haug and Arora 

1979), the initial design, lower and upper bounds for the design variable 

 are taken as [ ]Eccckkk  , , , , , , 321321 [ ]32.63 ,52 ,52 ,01 ,300 ,300 ,100 ,  

 and [ , respectively. The total time interval is 

considered as 2.5 seconds and the number of time steps is set to 300. No special 

techniques are used to find an initial point for the alternative formulations. The starting 

values for the displacements, velocities, and accelerations are taken as zero. Note that in 

all the alternative formulations, Eq. (7.8.7) is treated as a pair of linear inequalities, Eqs. 

(7.8.8) - (7.8.10) become linear constraints, and Eqs. (7.8.11) and (7.8.12) become simple 

bounds on the variables. Table 7.4 lists the sizes of the problems for different 

formulations. 

[ 2 ,200 ,200 ,50

]1 ,5 ,5 ]500 ,08 ,08 ,05 ,0001 ,0001 ,500
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Table 7.3 Optimum designs for examples 

1-DOF (N = 50) 5-DOF (N = 300) 

Var. CF AF1 & 3 AF2 Var. CF (Ref. 2) CF AF1 AF2 & 3 

E 0.59725 0.59752 0.59735 E 257.40 254.56 254.69 254.38 

B  0.59725 0.59752 0.59735 1k  50.00 50.00 50.00 50.00 

K  0.59725 0.59752 0.59735 2k  200.00 200.00 200.00 200.00 

   3k  241.90 200.00 200.00 200.00 

   1c  12.89 45.45 19.97 45.23 

   2c  77.52 77.35 76.99 77.39 

   3c  80.00 80.00 80.00 80.00 

 
 
 

Table 7.4 Sizes of design example 2 

Item Conventional Alternate 1 Alternate 2 Alternate 3 
No. of Variables 7 5N+22 15N+37 15N+32 

No. of Constraints 6N+6 10N+15 20N+25 20N+20 
No. of Non-zero 

Elements in Jacobian 42N+42 92N+102 111N+126 109N+109 

Total No. of Elements 
in Jacobian 42N+42 50N2+295N+330 300N2+1115N+925 300N2+940N+640 

 
 
 
Table 7.3 gives the optimum solutions with different formulations. It is seen that 

alternative formulations 2 and 3 find the same optimum design, while alternate 

formulation 1 and the conventional formulation converge to a slightly different solution. 

The optimum solution obtained here is slightly better than that available in the literature. 

7.8.3  Discussion of results 

1. Number of time steps 

It is obvious that the number of time steps used in the numerical solution process 

can affect the final solution and performance of the formulations. If the step size is too 

large, the time-dependent constraints may have larger violation between the grid points, 

and the optimal solution will not be accurate. If the step size is too small, the sizes of the 
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alternative formulations become very large which requires additional calculations and 

computer storage. To evaluate the performance of various formulations, a few different 

grid sizes are tried for the two examples and various results are summarized in Tables 

7.5, 7.6 and 7.7. Table 7.5 lists the final objective function values, Table 7.6 gives the 

numbers of iterations, and Table 7.7 gives the CPU efforts for different grid sizes. Table 

7-5 shows that all the formulations converged essentially to the same optimum solution 

for Example 1 with N = 50, 300 and 500. For Example 2, all the formulations converged 

to a slightly lower objective function value for N = 100 compared to the solution with N = 

300 and 500. This indicates that there was some violation of the constraints between the 

grid points when N = 100 was used. Table 7.7 shows that as the number of grid points is 

increased the computational effort with all the formulations also increases; the increase 

being more dramatic for the alternative formulations. It is also observed that for Example 

2, Alternate 1 is about 3 times faster with N = 100 and about 2 times faster with N = 300 

compared to the Conventional formulation. With N = 500, the conclusion is reversed. 

Alternate 2 and 3 are more efficient than the Conventional formulation only for N = 100. 

In any case all the alternative formulations converged to an optimum solution, with 

Alternate 1 requiring the least computational effort. 

 
 
 

Table 7.5 Final objective results for design examples  

Example 
Problem 

No. of Time 
Intervals (N) Conventional Alternate 1 Alternate 2 Alternate 3 

50 0.59725 0.59752 0.59735 0.59752 
300 0.59725 0.59726 0.59726 0.59726 1-DOF 
500 0.59725 0.59725 0.59725 0.59725 
100 252.81 251.24 252.57 251.24 
300 254.56 254.69 254.38 254.38 5-DOF 
500 254.71 254.74 254.96 254.64 
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Table 7.6 Numbers of iterations for design examples  

Example 
Problem 

No. of Time 
Intervals (N) Conventional Alternate 1 Alternate 2 Alternate 3 

50 4 5 16 6 
300 4 8 15 3 1-DOF 
500 4 9 15 4 
100 23 23 10 24 
300 29 27 23 20 5-DOF 
500 22 18 23 38 

 
 
 

Table 7.7 Computing efforts for different formulations (s)  

Example 
Problem 

No. of Time 
Intervals (N) Conventional Alternate 1 Alternate 2 Alternate 3 

50 0.04 0.03 0.06 0.05 
300 0.25 0.64 1.35 0.75 1-DOF 
500 0.45 1.62 2.11 2.00 
100 13.62 4.30 4.80 10.99 
300 23.19 12.00 45.99 49.31 5-DOF 
500 17.77 74.55 171.26 117.72 

 
 
 
2. Scaling of variables 

An important point that needs to be noted here is that the alternative formulations 

include different types of variables, which have different orders of magnitudes. Therefore 

scaling of some of the variables is necessary to reduce numerical ill-conditioning. In 

Alternate 2 and 3, velocity and acceleration variables are normalized by positive 

numbers. These normalizers are comparable to the velocity and acceleration limits. If the 

generalized displacements have large difference in their orders of magnitude, e.g., 

rotations and translations, some variables, such as the rotations may also need to be 

scaled. This is true for the rotational degrees of freedoms in Example 2. The current 

scaling option in SNOPT works fine only if a good starting point is provided or the 

problem is not too nonlinear. Efficient automatic scaling procedures need to be developed 
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and incorporated into the alternative formulations. 

3. Global solution 

The five-DOF example problem has been solved by starting from several different 

points to determine all the local minimum points. All the starting points converged to one 

of the two objective function values (254.69 and 254.38). These objective function values 

are almost the same but have slightly different design variable values, especially the 

damping parameter c1 for the driver’s seat. Apparently the optimum cost function is 

insensitive with respect to this parameter. The two solutions can be considered essentially 

as global optima for the problem. 

 
 
 

Table 7.8 Advantages and disadvantages of two formulations   

Formulation Advantages Disadvantages 

Conventional 

1.  Small optimization problems. 
2.  Equations of motion are satisfied at each 

iteration; intermediate solutions are 
usable. 

3.  Error in the solution of DEs can be 
controlled.  

 

1.  Equations of motion must be integrated at 
each iteration; a good DE integrator is 
needed. 

2.  Constraints are implicit functions of the 
variables; design sensitivity analysis must 
be performed. 

3.  Implementation is more tedious. 
4.  The optimization problem is always dense. 

Alternative 

1. Equations of motion are not integrated at 
each iteration; no DE integrator is 
needed.  

2. Formulations are explicit in terms of 
variables; design sensitivity analysis is 
not needed. 

3. Many constraints become linear or 
simple bounds on variables. 

4. Jacobians and Hessians are sparse. 
5. Implementation is easier. 

1. Intermediate solutions are not usable. 
2. Error in the state variables cannot be 

controlled. 
3. Optimization algorithms for large-scale 

problems must be used. 
4. For efficiency, advantage of sparsity of the 

Jacobians and Hessians must be utilized. 
5. Scaling of optimization variables is needed. 

 
 
 
4. Advantages and disadvantages of formulations 

The advantages and disadvantages of the conventional and alternative 

formulations are listed in Table 7.8, and the differences between the alternative 
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formulations are discussed in Table 7.9. Note that it is not necessary to include velocities 

and accelerations as variables to obtain explicit expressions for constraints and Jacobians. 

Their inclusion gives more optimization variables and constraints, and requires more data 

storage; however, their inclusion simplifies the constraint expressions and computer 

implementations. Some constraints become linear or simple bounds on the variables, such 

as the constraints on the velocities and accelerations. The gradients of the linear 

constraints in the alternative formulations can be programmed independently and called 

only once in the solution process, resulting in fewer calculations. 

 
 
 

Table 7.9 Advantages and disadvantages of alternative formulations  

Formulation Advantages Disadvantages 

Alternate 1 

1. Fewer optimization variables and 
constraints. 

 

1. Derivative calculation and 
implementation is slightly more 
tedious. 

2. Denser Jacobians and Hessians. 
 

Alternate 2 
& 3 

1. Very sparse Jacobians and Hessians. 
2. Implementation is very 

straightforward. 
3. Velocity or acceleration constraints 

become linear or simple bounds. 

1. Larger numbers of variables and 
constraints. 

2. Larger number of non-zero elements in 
Jacobians. 

 

 
 
 

7.9  Summary 

Three alternative formulations for optimization of transient dynamic mechanical 

system were proposed and evaluated. Different state variables were treated as 

optimization variables in the formulations, i.e., generalized displacements, velocities and 

accelerations. Therefore the analysis equations (DEs) could be treated as equality 

constraints in the optimization process. By introducing more variables into the 

formulations, the forms of the constraints and their derivatives were changed. All 
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functions of the formulations became explicit in terms of the optimization variables. 

Derivatives of the functions with respect to the variables were computed explicitly. The 

formulations were implemented with a sparse NLP code for evaluation. Different time 

steps were tested. The alternative formulations had more variables and constraints, 

although the constraints had simpler form compared to the conventional formulation. 

Therefore an optimization algorithm for large numbers of variables and constraints was 

used to solve the problem. Two example problems were solved extensively to study and 

evaluate the formulations. The solutions for the sample problems were also compared 

with those available in the literature.  

Based on the current research the following conclusions are drawn: 

1. All the proposed alternative formulations using simple finite difference 

approximations for the state variables worked well and obtained optimum 

solutions for the example problems. 

2. The proposed alternate formulation 1 was more efficient than the formulations 

2 and 3. 

3. The proposed alternate formulation 1 was competitive and more efficient than 

the conventional formulation for reasonable number of time grid points. 

4. The alternative formulations have potential for further development to 

optimize practical dynamic systems. 
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CHAPTER 8 
TRANSIENT DYNAMIC RESPONSE OPTIMIZATION II 

 
 
 

8.1  Introduction 

This chapter is a continuation of the research initiated on the subject of 

optimization of transient dynamics problems in Chapter 7. Several alternative 

formulations for transient dynamic response optimization are described, analyzed and 

compared. A key feature of the formulations is that the state variables, in addition to the 

real design variables, are treated as independent variables in the optimization process. 

The state variables include different combinations of generalized displacements, 

velocities and accelerations. Formulations based on different discretization techniques for 

first-order and second-order differential equations are presented. Finite difference, 

Newmark’s method and methods based on collocation are all discussed. Similar to the 

simultaneous analysis and design (SAND) approach used for optimization of structures 

subjected to static loads and the direct collocation/transcription method for optimal 

control, the equations of motion are treated as equality constraints. A major advantage of 

these formulations is that special design sensitivity analysis methods are no longer 

needed. However, the formulations have larger numbers of variables and constraints. 

Therefore sparsity of the problem functions must be exploited in all the calculations. 

Advantages and disadvantages of the formulations are discussed. The numerical results 

for an example problem and performance features of the formulations are compared. All 

the formulations converged to the optimum solution for the example problem. They were 

quite efficient for a smaller number of time grid points; however the computational times 
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increased as the number of grid points was increased. 

The major contributions of this chapter are as follows: (1) simultaneous 

formulations based on the SAND and direct collocation concepts are described, evaluated 

and compared, (2) some formulations based on the direct discretization of the second 

order form of the equations of motion (Newmark’s method, Hermite and B-spline 

interpolations) are proposed, which may facilitate use of the existing simulation software 

in the optimization process, and (3) a modern and powerful optimization algorithm and 

associated software are used that take full advantage of the sparsity structure of the 

simultaneous formulations. 

8.2  Dynamic Response Optimization Problem 

As presented in Chapter 7, the basic dynamic response optimization problem is to 

determine design parameters related to stiffness and damping properties of the dynamic 

system, to achieve certain goals (e.g., minimization of a cost function, such as the 

maximum displacement or acceleration) while satisfying all the performance 

requirements.  

Let  be an m dimensional vector to represent the design variables for the 

problem, which may directly include the mass, stiffness and damping parameters of the 

dynamic system, and  and 

x

z [ ]zzy &=T  be d and 2d dimensional vectors that represents 

the state variables for the problem. The equations of motion for a linear system are 

written in a second order form as Eq. (7.2.1), or a first order form, as of Eq. (7.2.2). It is 

worthwhile to examine both the second and the first order forms of the dynamics 

equations. Design requirements are imposed mostly as inequality constraints as in Eq. 

(7.2.5), or point-wise constraints, which need to be satisfied at each point of the entire 
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time interval , as [ Tt ,0∈ ]

)

( ) 0zzzxg ≤t,,,, &&&       (8.2.1) 

The optimization problem is to find  to minimize the cost functional in Eq. (7.2.4) 

subject to the constraints of Eqs. (7.2.1) and (8.2.1), and other time-independent 

constraints. In this study, the conventional treatment is used where the time interval is 

divided into N subintervals (N+1 time grid points) and the constraints are imposed at 

each time grid point: 

x

( 0zzzxg ≤iiii t,,,, &&& ,       i = 0, N      (8.2.2) 

where , , and ( )ii tzz = ( )ii tzz && = ( )ii tzz &&&& = , and they are the generalized displacement, 

velocity and acceleration vectors at itt = . The length of the subinterval is , and is 

defined as . Note that the notation i = 0, N represents i = 0,1,2,…, N. In 

dynamic systems, the time-dependent inequality constraints in Eq. (8.2.1) may include 

the displacement, velocity and acceleration constraints. 

t∆

NTt /=∆

If the first-order form of the DEs is used, state space variables  in Eq. (7.2.2), 

i.e., displacements  and velocities  are used in the constraint expressions. The 

problem is to determine  to minimize the cost function in Eq. (7.2.4), subject to the first 

order DEs in Eq. (7.2.2), and 

y

z z&

x

( ) 0yyxg ≤t,,,    &       (8.2.3) 

Note that Eqs. (7.2.2) and (8.2.3) are discretized into N+1 equations in the entire time 

interval [ , and they represent a system of constraints as follows: ]T,0

( ) 0yyxg ≤iiii t,,,    & ,       i = 0, N           (8.2.4) 
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where , and ( )ii tyy = ( )ii tyy && = . If the problem is solved using the conventional 

formulation, where the optimization is carried out only in the space of design variables, 

the equations of motion in (7.2.1) and (7.2.2) need to be integrated to determine the 

system response and thus calculate various functions of the optimization problem. Since 

the constraint functions in this formulation are implicit functions of the design variables, 

implicit differentiation procedures need to be used to evaluate the gradients. Analytically, 

the direct differentiation or the adjoint variable method can be used (Hsieh and Arora 

1984; Arora 1999). These procedures are difficult to implement with an existing 

simulation code, because the code needs to be recalled to solve for displacement, velocity 

and acceleration gradients or the adjoint vectors. Then, the gradients of the response 

functionals need to be assembled using the adjoint vectors or the displacement gradients. 

8.3  Simultaneous Formulations Based on First Order 

DEs  

In this section, simultaneous formulations based on the direct 

collocation/transcription method of optimal control are presented and discussed for 

optimal design problems. In these formulations, a set of discrete defect equations is 

derived from the first order DEs and imbedded into the optimization formulation. Starting 

form a system of first order differential equations, approximations in the time domain for 

the state variables are set up and collocation is enforced at certain time points. Direct 

collocation/transcription methods have been used for various optimal control problems, 

such as trajectory optimization, chemical process engineering, and robotic motion 

planning. 

These formulations are based on different discretization and integration 
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techniques. The first order state differential equations in Eq. (7.2.2) are approximated 

within each segment using an integration formula. The approximate integration 

formulation is then transformed to a set of algebraic equations, the so-called defect 

equations, which need to be set to zero to enforce the DEs. In this section, the following 

notation is used: 

( iii t , , xyff = ) (8.3.1) 

where  is the state derivatives in Eq. (7.2.2) at if itt =  and . For some 

formulations, 

( )ii tyy =

( )icic t ,, yy = ;     ( )icicic t ,,,  , , xyff =  (8.3.2) 

in which , (i = 1, N).  is the center of the time interval, and  and 

 are the corresponding values of the state variables and derivatives. 

( ) 2/1, iiic ttt += − ict , ic,y

ic,f

8.3.1  Simultaneous formulation based on trapezoidal 

discretization (TR)  

This formulation is based on the trapezoidal rule of numerical integration 

(Atkinson 1988). The general form of integration from time  to  is given as 1−it it

∫+=∫+=
−− −−
i
i

i
i

t
ti

t
tii dtdt

11 11 fyyyy &  (8.3.3) 

If the trapezoidal approximation is considered, the defect equations can be set up 

(Herman and Conway 1995) as 

( 11 2 −− +−−= iiiii
t ffyyζ )∆ ,       i = 1, N (8.3.4) 

where  is defined in Eq. (8.3.1). if
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In this formulation, the state variables  (i = 0, N) are chosen as the optimization 

variables. The defect equation in Eq. (8.3.4) needs to be satisfied to enforce the DEs; 

therefore, this formulation is to minimize the objective function in Eq. (7.2.4), subject to 

the equality constraints as 

iy

( ) 0ffyy =+−− −− 11 2 iiii
t∆ ,       i = 1, N (8.3.5) 

and the discretized form of inequality constraints in Eq. (8.2.4). Note that time-dependent 

constraints on the state variable  can be imposed at the discrete time grid points, i.e.,  

(i = 0, N). This formulation is based on a linear approximation of the state gradient f , 

and therefore a quadratic approximation of the state variables y  in each time subinterval. 

It can also be derived from the forward difference approximation of the average 

velocities and accelerations in each time subinterval. 

y iy

8.3.2  Simultaneous formulation based on compressed 

Hermite-Simpson discretization (CHS)   

If the Simpson rule is used in the general form of numerical integration in Eq. 

(8.3.3) from time  to , the defect equations are (Hargraves and Paris 1987; von 

Stryk and Bulirsch 1992): 

1−it it

( 11 4
6 −− ++−−= ii,ciiii
t fffyyζ )∆ ,       i = 1, N (8.3.6) 

where  and  are defined in Eqs. (8.3.1) and (8.3.2), respectively, and if ic,f

( ) ( iiiiic
t ffyyy − )∆

++= −− 11, 82
1  (8.3.7) 

The state variables  (i = 0, N) are chosen as the optimization variables. This iy
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formulation is to minimize the objective function defined in Eq. (7.2.4), subject to the 

inequality constraints in Eq. (8.2.4), and the equality constraints (approximated state 

equation) as  

( 0fffyy =++−− −− 11 4
6 ii,ciii
t )∆ ,       i = 1, N (8.3.8) 

Note that time-dependent constraints on the state variables can be imposed at the 

discrete time grid points, or both the discrete time grid points and the center of each time 

subintervals, which is used in this study. In this formulation, the state variables y  are 

chosen as continuous differentiable functions and defined piecewise as cubic polynomials 

between  and . The formulation can also be derived by collocating the first 

derivatives as equality constraints at the center point of each subinterval (Hargraves and 

Paris 1987; von Stryk and Bulirsch 1992). 

1−iy iy

8.3.3  Simultaneous formulation based on separated 

Hermite-Simpson discretization (SHS)   

An alternate form can be obtained, if both the state variables  (i = 0, N) and 

 (i = 0, N-1) are treated as optimization variables (Betts and Huffman 1999). In this 

case, the equality constraints are Eqs. (8.3.8) and 

iy

i,cy

( ) ( ) 0ffyyy =−
∆

−+− −− iiiiic
t

11, 82
1 ,       i = 1, N (8.3.9) 

Equation (8.3.9) is derived from Eq. (8.3.7), and contains additional constraints that need 

to be satisfied. The time-dependent constraints on the state variables can be imposed at 

the discrete time grid points, or both the discrete time grid points and the center of each 

time subintervals. 
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8.4  Simultaneous Formulations Based on Second Order 

DEs  

Although a large number of accurate, high-order or multi-step numerical methods 

are available to solve the system of first order DEs (Atkinson 1988), the analysis of 

practical structural and mechanical dynamics also heavily relies on those single-step 

direct time integration methods that solve the second order DEs directly (Bathe 1982; 

Chopra 2001). These methods are usually more efficient, and they are widely used in 

many commercial codes. Therefore, the development of simultaneous formulations 

combined with the second order form of the DEs will bring benefit to use these available 

codes directly. In the next section, some of these formulations are presented; they are 

based on Newmark’s method, central difference method, and Hermite and cubic B-spline 

interpolations. 

8.4.1  Simultaneous formulations based on Newmark’s 

method (Newmark)   

The Newmark’s method is one of the most popular single step direct integration 

methods for second order DEs. Based on the assumption that the acceleration is linear 

within each time step, the following equations can be set up: 

( ) 1
22

2
1

1 ++ ∆+∆−+∆+= iiiii ttt zzzzz &&&&& ββ  (8.4.1) 

( ) 11 1 ++ ∆+∆−+= iiii tt zzzz &&&&&& γγ  (8.4.2) 

Two widely used cases of Eqs. (8.4.1) and (8.4.2) are as follows:  

2
1=γ  and 4

1=β , it is the average acceleration method. 

2
1=γ  and 6

1=β , it is the linear acceleration method. 
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Note that when 2
1=γ  and 0=β , Eqs. (8.4.1) and (8.4.2) can be reduced to very simple 

form, and this is in fact the central difference method, also the constant acceleration 

method. For general cases when 0≠β , it is not easy to use the displacements to express 

the velocities and accelerations. When 0=β , it is possible to express the velocities and 

accelerations with respect to the displacements in a simple form. The central difference 

method will be discussed in the next section. Two possible simultaneous formulations 

based on Newmark’s method in Eqs. (8.4.1) and (8.4.2) are discussed in this section. 

1. Design variables, displacements and velocities as optimization variables 

(Newmark-1) 

If displacements and velocities are treated as optimization variables, accelerations 

can be expressed in terms of the displacements and velocities. Therefore, an explicit form 

can be obtained for the dynamic optimization problem. The problem is to determine ,  

and  (i = -1, N+1) to minimize the cost function of Eq. (7.2.4), subject to the state 

equations (7.2.1), and constraint in Eq. (8.2.2). More equality constraints are needed due 

to the introduction of additional variables. Rearranging the Newmark’s equations in Eqs. 

(8.4.1) and (8.4.2), the accelerations are expressed as follows: 

x z

z&

( )[ 11
1

++ ∆−∆−−+−= iiiii tt zzzzz &&&& ββγγγϕ ] (8.4.3) 

( ) ( ) ( ) ( )[ ]12
1

2
1

1
1

1 11 +++ ∆−+∆+−+−−−= iiiii tt zzzzz &&&& ββγγγϕ  (8.4.4) 

where ( ) 2
2
1 t∆−= βγϕ . The equality constraints among the variables , and  can be 

constructed by substituting Eqs. (8.4.3) or (8.4.4) into (8.4.2) or (8.4.3), as 

iz iz&

( ) ( )
( ) ( ) 0zzz

zzz
=∆+∆+−+∆+−+

−−+−

++

++

212
1

2
1

21

2
121

iii

iii

ttt &&& βγββγ
γγγ

 (8.4.5) 
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Note that in Eqs. (8.4.3) and (8.4.4), 02
1 ≠− βγ . This means that the average 

acceleration method where 2
1=γ  and 4

1=β , is not applicable here. The basic idea of 

the formulations based on the direct discretization of second order DEs is that the system 

of DEs is discretized as equality constraints. However, it is not possible to express  in 

terms of and , from Newmark’s equations in Eqs. (8.4.1) and (8.4.2). Therefore, it is 

not easy to express and evaluate the equality equations in Eq. (7.2.1). 

iz&&

iz iz&

2. Design variables, displacements, velocities and accelerations as optimization 

variables (Newmark-2) 

From Eq. (7.2.1), it is seen that other simultaneous formulations are possible. If 

the displacements z , velocities  and accelerations  are treated as variables 

simultaneously, another explicit form is obtained. The problem is to determine x ,  (i = 

-1, N+1),  and  (i = 0, N) to minimize the cost function of Eq. (7.2.4), subject to the 

equations of motion (7.2.1), and discretized constraints in Eq. (8.2.2). It is obvious that 

the equality constraints in Eq. (7.2.1) are explicit with respect to the optimization 

variables , ,  and z . However, more equality constraints are needed, since the state 

variables are related to each other by the Newmark’s equations in Eqs. (8.4.1) and (8.4.2). 

These need to be imposed in the formulation. 

z& z&&

z

z& z&&

x z z& &&

8.4.2  Simultaneous formulations based on central 

difference method (CD)   

Three simultaneous formulations based on the central difference approximation 

have been presented and evaluated in Chapter 7. Details of these three formulations are 

not presented here. However, these formulations include displacement only (CD-1), 
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displacement and velocity (CD-2), and displacement, velocity and acceleration (CD-3) as 

additional optimization variables, respectively. Finite difference relationships (Eqs. 

(7.4.3) and (7.4.4)) are used as equality constraints in the formulations, which makes the 

implementation of the algorithm quite simple. 

8.4.3  Simultaneous formulation based on piecewise 

Hermite interpolation (Hermite)   

The basic discretization scheme is as follows: the state variables  are chosen as 

continuous differentiable functions and defined as piecewise cubic polynomials between 

 and , with the state equations (7.2.1) satisfied at  and . For 

z

iz 1+iz it 1+it [ ]1, +∈ ii ttt , 

using a parameter , such that [ 1 ,0∈u ] tutt i ∆+= , the approximation of state variables  

is 

z
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=
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where . The approximation function (8.4.6) of the state variables must 

satisfy the DEs (7.2.1) at the grid point  (i = 0, N).  

ii ttt −=∆ +1

it

The optimization problem is to determine x , , and z  to minimize the cost 

function of Eq. (7.2.4), subject to the equality constraints in Eq. (7.2.1) at the discrete 

time grid points, and the discretized inequality constraints in Eq. (8.2.2) at the time grid 

z &
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point and mid-point of each interval, ( ) 2/1, ++= iiic ttt  (i = 0, N-1). From Eq. (8.4.6), 
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At the grid point , itt =

( ) ( 112 2332
++ ∆−∆−+−

∆
== iiiiiai tt

t
t zzzzzz &&&&&& )  (8.4.9) 

A system of equality constraints is obtained at each time grid point, as 

( ) ( ) ( ) ( ) ( )iiiiiiii ttt
t

,2332
112 xFzxΚzxCzzzzxM =++⎥⎦
⎤

⎢⎣
⎡ ∆−∆−+−
∆

++ &&&  (8.4.10) 

The relationships between the displacement and velocity variables are obtained from Eq. 

(8.4.9), as 

( 0zzzzz ) =++∆+− +++ 212 433 iiiii t &&&  (8.4.11) 

8.4.4  Simultaneous formulation based on cubic B-spline 

interpolation (B-spline)   

If the final state variable history needs to be very smooth, cubic B-spline 

interpolation (Mortenson 1985) can be used. B-splines have many important properties 

such as continuity, differentiability, and local control. There are a number of ways to 

define the B-spline basis functions, and here the uniform B-spline is used. Let 

 be a non-decreasing sequence of real numbers, i.e., 

. The  are called knots, and they are evenly spaced for a uniform B-

spline. A cubic B-spline is defined as 

{ nktttT  ..,, , 10= }

10 ,1 , nk- itt ii =≤ + it

( ) ( ) Tt PtNtz
nc

j
jj ≤≤∑=

=
0     ;

0
4,  (8.4.12) 
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where the { } , nc jPj 0 , =  are the ( )1+nc  control points, and the ( ){ }tN j 4,  are the cubic 

B-spline basis functions defined on the non-periodic knot vector (( ) knots). Using a 

parameter  defined as such that 

1+nk

[ 1 ,0∈u ] tutt i ∆+= , the basis functions of a cubic B-

spline are as follows 
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Since each segment of the curve is defined by four control points, for , Eq. 

(8.4.12) can be simplified as 

1+≤ ii tt

( ) ( ) ( ) ( ) ( ) 34,324,214,14, ++++++ +++= iiiiiiii PuNPuNPuNPuNuz  (8.4.14) 

First and second order derivatives of the displacement are needed in the optimization 

procedure. The kth derivatives of a cubic B-spine curve can be easily obtained from Eq. 

(8.4.14), since only the basis functions are functions of time. 

In this formulation, the control point vector  for each DOF is chosen as the 

optimization variables. This formulation is to minimize the objective function in Eq. 

(7.2.4), subject to the inequality constraints in Eq. (8.2.1), as 

P

( ) 0Pxg ≤t,,  (8.4.15) 

Note that the equilibrium equations in Eq. (7.2.1) can be expressed similarly in 

terms of P  and treated as equality constraints in the formulation. The time-dependent 

constraints on the state variables can be imposed on the discrete time grid points. 
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8.5  Evaluation of Formulations  

Table 8.1 shows the sizes of all the formulations. The following symbols are used 

in the table: m = number of elements in the design variable vector ; N = number of time 

intervals (number of time grid points = N + 1); n = number of control points in a cubic B-

spline; d = number of DEs in Eq. (7.2.1), or the dimension of vector ; e = number of 

constraints in ; however, some of the inequality constraints in some alternative 

formulations become simple bounds on the variables. 

x

z

g

 
 
 
Table 8.1 Number of variables and constraints for different formulations  

Formulations Variables No. of 
Variables 

No. of Equality 
Constraints 

No. of Inequality 
Constraints 

Conventional x  m 0 e(N+1) 
TR yx,  m +2dN+2d 2dN e(N+1) 

CHS yx,  m +2dN+2d 2dN e(2N+1) 1st order 
DEs SHS cyyx  , ,  m +4dN+2d 4dN e(2N+1) 

Newmark-1 zzx & , ,  m+2dN+6d 2dN+2d e(N+1) 
Newmark-2 zzzx &&&  , , ,  m+ 3dN+9d 3dN+5d e(N+1) 

CD-1 zx,  m+dN+3d dN+d e(N+1) 
CD-2 zzx & , ,  m+3dN+6d 3dN+4d e(N+1) 
CD-3 zzzx &&&  , , ,  m+3dN+5d 3dN+3d e(N+1) 

Hermite zzx & , ,  m+2dN+4d 2dN+d e(2N+1) 

2nd order 
DEs 

B-spline Px  ,  m+nd dN+d e(N+1) 
 
 
 
Note that the alternative formulations do not require the equations of motion in 

Eq. (7.2.1) to be satisfied exactly at each iteration of the optimization process. They need 

to be satisfied only at the final solution point. This has an advantage if instabilities occur 

or no solution exists for certain designs in the design space. Also, unnecessary 

simulations of the system are avoided at intermediate designs, where it might be difficult 

to obtain a solution. 
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Table 8.2 Advantages and disadvantages of different formulations   
Formulations Advantages Disadvantages 

Conventional 

• Smaller NLP problems. 
• DEs are satisfied at each iteration; 

intermediate solutions are usable. 
• Error in the solution of DEs can be 

controlled. 
 

• Design sensitivity analysis must 
be performed. 

• Dense Jacobian and Hessian 
matrices. 

• DEs must be integrated; a good 
DEs integrator is needed. 

 

TR 

• Implementation is straightforward. 
• Velocity constraints become linear or 

simple bounds.  
 

• Larger number of variables and 
constraints. 

• Acceleration constraints become 
complex. 1st

order 
DEs 

HS 

• Good smoothness 
• Smaller NLP problems 
• Velocity constraints become linear or 

simple bounds. 

• Implementation is not 
straightforward. 

• Acceleration constraints become 
complex. 

CD 

• Very sparse Jacobians and Hessian. 
• Implementation is very straightforward. 
• Velocity or acceleration constraints 

become linear or simple bounds. 

• Larger number of variables and 
constraints. 

• Larger number of non-zero 
elements in Jacobians. 

 

Newmark 

• Very sparse Jacobians and Hessian. 
• Implementation is very straightforward. 
• Velocity or acceleration constraints 

become linear or simple bounds. 
• Very general 

• Larger number of variables and 
constraints. 

• Larger number of non-zero 
elements in Jacobians. 

 

Hermite 

• Good smoothness. 
• Smaller NLP problems  
• Velocity or acceleration constraints 

become linear or simple bounds. 

• Implementation is not 
straightforward. 

 

2nd 
order 
DEs 

B-spline 

• Good smoothness. 
• Smaller NLP problems  
• Displacement, velocity or acceleration 

constraints are linear. 

• Implementation is not 
straightforward. 

• Displacement, velocity or 
acceleration constraints are not 
simple bounds. 

 

 
 
 
The differences between the simultaneous formulations are discussed in Table 

8.2. For the simultaneous formulations based on the first order DEs, the number of time 

grid points is usually not very large; therefore, the resulting NLP may not need to be too 

large. Since most of the methods are based on polynomial interpolations between grid 

points, only a reasonable number of grid points are needed. Moreover, these methods can 

provide more accurate solutions, provided that multi-step or higher order methods are 
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used. As can be seen that the defect equations (i.e., Eqs. (8.3.5) and (8.3.8)) involve 

repeated substitutions of the equations of motion (7.2.2), if multi-step methods of 

discretization or higher order polynomial interpolations are used. Thus implementation 

becomes tedious. Sparsity patterns of those formulations are hard to identify and define. 

For the constraints involving accelerations, the expressions for some cases become 

complex, since the equations of motion are embedded in the expressions for 

accelerations. 

With the second order DEs, since the equations are directly discretized and treated 

as equality constraints, the complexity of the constraint equations is well defined. The 

implementation and sparsity pattern are very straightforward. The methods treat the 

acceleration constraints more efficiently. For the finite difference-based methods, e.g., 

central difference or Newmark’s methods, since a small time step is used to guarantee 

convergence and stability, the number of grid points N is usually very large, resulting in 

large numbers of variables and constraints in the formulations. Large-scale NLP solution 

algorithms with sparse matrix capabilities are required to solve the simultaneous 

formulations efficiently. These methods are more suitable for dynamic response that may 

not necessarily be smooth. Some aspects of the simultaneous formulations are discussed 

in details in Section 8.6, when a design example is solved. 

8.6  A Numerical Example 

All the simultaneous formulations developed in Sections 8.3 and 8.4 are applied 

to a dynamic mechanical example for evaluation. All the simultaneous formulations are 

solved using the sparse SQP algorithm in SNOPT (Gill et al. 2002), while the 

conventional formulation is solved using the dense SQP solver in SNOPT. A Dell PC 
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with 2.53 GHz P4 processor and 1.0 GB RAM is used for running the programs and 

recording the relative CPU times. Each solution case of the example problem was run 

several times with different starting point and the shortest time was recorded. Results of 

the examples are listed and compared. Advantages and disadvantages of the formulations 

are discussed. 

8.6.1  5-DOF vehicle suspension system  

The five degree of freedom vehicle suspension system (Haug and Arora 1979) is 

presented in Chapter 7 and shown in Figure 7.3. The equations of motion and design 

requirements for the system are given there. 

 
 
 

Table 8.3 Sizes of the design problem for different formulations  

Formulations No. of 
Variables 

No. of 
Constraints 

No. of Non-zero 
Elements in 

Jacobian  
(w. Sparsity) 

No. of Non-zero 
Elements in 

Jacobian  
(w/o Sparsity) 

Conventional 7 6N+6 42N+42 42N+42 
TR 10N+17 15N+5 141N+27 150N2+305N+85 

CHS 10N+17 22N+5 349N+27 220N2+424N+85 
1st  

order 
DEs SHS 20N+17 30N+5 335N+27 600N2+610N+85 

Newmark-1 10N+37 15N+15 115N+115 150N2+705N+555 
Newmark-2 15N+52 20N+30 119N+164 300N2+1490N+1560 

CD-1 5N+22 10N+15 92N+102 50N2+295N+330 
CD-2 15N+37 20N+25 111N+126 300N2+1115N+925 
CD-3 15N+32 20N+20 109N+109 300N2+940N+640 

Hermite 10N+27 22N+10 160N+85 220N2+694N+270 

2nd

order 
DEs 

B-spline 5N+22 12N+22 148N+178 60N2+374N+484 
 
 
 

8.6.2  Discussion of results 

1. Sizes of optimization problem 

Table 8.3 lists the sizes of the problems for different formulations. For the 

conventional formulation, the size of the design problem is well defined having 7 design 
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variables. This is a quite small design problem in terms of numerical optimization. In the 

alternative formulations, there are large numbers of variables, depending on the number 

of time grid points chosen. If the number of grid points is large, the resulting optimization 

problem may include hundreds and even thousands of variables, which may make the 

problem ill-conditioned sometimes. This is the major disadvantage of these alternative 

formulations. Even though the alternative formulations are quite sparse, the storage 

requirement is still larger than that for the conventional formulation for this example, as 

seen in Tables 8.3. 

 
 
 

Table 8.4 Final results of design example (N = 300)  

Formulations E  1k  2k  3k  1c  2c  3c  
Conventional (Haug and Arora 1979) 257.40 50.00 200.00 241.90 12.89 77.52 80.00 

Conventional 254.56 50.00 200.00 200.00 45.45 77.35 80.00 
TR 254.91 50.00 200.00 200.00 20.10 76.95 80.00 

CHS 254.82 50.00 200.00 200.00 50.00 77.39 80.00 1st order 
DEs 

SHS 254.74 50.00 200.00 200.00 31.42 77.19 80.00 
CD-1 254.69 50.00 200.00 200.00 19.97 76.99 80.00 
CD-2 254.38 50.00 200.00 200.00 45.23 77.39 80.00 
CD-3 254.38 50.00 200.00 200.00 45.23 77.39 80.00 

Newmark-1 (Const. ac.) 254.69 50.00 200.00 200.00 19.97 76.99 80.00 
Newmark-1 (Linear ac.) 254.84 50.00 200.00 200.00 20.06 76.96 80.00 
Newmark-2 (Const. ac.) 254.69 50.00 200.00 200.00 19.97 76.99 80.00 
Newmark-2 (Linear ac.) 254.56 50.00 200.00 200.00 45.61 77.36 80.00 
Newmark-2 (Ave. ac.) 254.91 50.00 200.00 200.00 20.10 76.95 80.00 

Hermite 254.55 50.00 200.00 200.00 28.44 77.15 80.00 

2nd order 
DEs 

B-spline 254.65 50.00 200.00 200.00 50.00 77.41 80.00 
 
 
 
2. Number of time steps  

It is obvious that the number of time steps used in the numerical solution process 

can affect the final solution and performance of the formulations. If the time step size is 

too large, the time-dependent constraints may have larger violations between the grid 

points, and the optimal solution will not be accurate. If the step size is too small, the sizes 
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of the alternative formulations become very large which requires additional calculations 

and data storage. To evaluate the performance of various formulations, a few different 

grid sizes (N = 100, 300, and 500) are tried for the example and the final optimization 

results are summarized in Tables 8.4 and 8.5, and the numbers of iterations and CPU 

efforts are given in Table 8.6. 

 
 
 

Table 8.5 Final objective values of design example  
Formulations N=100 N=300 N=500 
Conventional  252.81 254.56 254.71 

TR 253.09 254.91 254.73 
CHS 255.00 254.81 254.78 1st order  

DEs SHS 254.31 254.74 254.85 
CD-1 251.24 254.69 254.74 
CD-2 252.57 254.38 254.96 
CD-3 251.24 254.38 254.64 

Newmark-1 (Const. ac.) 251.24 254.69 254.64 
Newmark-1 (Linear ac.) 252.45 254.84 255.01 
Newmark-2 (Const. ac.) 251.24 254.69 254.96 
Newmark-2 (Linear ac.) 252.45 254.56 254.80 
Newmark-2 (Ave. ac.) 253.09 254.91 254.73 

Hermite 252.51 254.55 255.02 

2nd order 
DEs 

B-spline 251.95 254.65 254.95 
 
 
 
Table 8.4 gives the final optimum solutions with different formulations for N = 

300. The final objective values of the design example are listed in Table 8.5. It is seen 

that various simultaneous formulations work well and optimal solutions are obtained. The 

optimum solutions obtained by the conventional and simultaneous formulations in this 

study are slightly better than those available in the literature. Most of the formulations 

converged to a slightly lower objective function value for N = 100 compared to the 

solution with N = 300 and 500. This indicates that there was some violation of the 

constraints between the grid points when N = 100 was used. 
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Table 8.6 Numbers of iterations and computing efforts for different formulations  
Numbers of Iterations CPU Time (s) Formulations 

N=100 N=300 N=500 N=100 N=300 N=500 
Conventional 23 29 22 13.6 23.2 17.8 

TR 21 32 43 4.8 51.3 117.5 
CHS 34 190 18 24.6 323.9 465.3 1st order 

DEs SHS 20 27 38 32.4 288.0 539.5 
CD-1 23 27 18 4.3 12.1 74.4 
CD-2 10 23 26 4.9 46.4 172.8 
CD-3 24 20 38 10.9 49.1 116.8 

Newmark-1 (Const. ac.) 22 30 35 5.9 38.4 180.3 
Newmark-1 (Linear ac.) 26 42 31 7.3 51.8 227.8 
Newmark-2 (Const. ac.) 48 22 12 8.4 54.8 64.5 
Newmark-2 (Linear ac.) 30 37 21 7.8 84.5 142.4 
Newmark-2 (Ave. ac.) 20 21 29 9.0 58.0 171.7 

Hermite 37 28 17 8.3 211.5 406.3 

2nd order 
DEs 

B-spline 30 26 24 6.1 72.0 209.3 
 
 
 
Since different approximations of the state variables are introduced in the 

simultaneous formulations, the quality of the final solutions is different. Note that the 

quality of the final solution depends on the approximation made between the state 

variables. In this work, the finite difference based methods, such as CDs and Newmarks 

provide similar performance in terms of the optimal solutions, numbers of iterations and 

computing efforts. In order to have good results, the number of grid points usually needs 

to be large. The second order Hermite and Bspline formulations do not provide better 

accuracy with a small number of time grid points, because the equations of motion are 

only imposed at the discrete time grid points. 

For the simultaneous formulations based on the first order DEs, such as CHS and 

SHS, the optimal solutions with N = 100 are already very good. This can be explained by 

the piecewise cubic polynomial approximations for both the generalized displacements 
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and velocities, and the imposing of constraints at the center of each time step. These 

provide accurate approximations for the state variables; therefore, for CHS and SHS to 

reach similar accuracy of optimal solutions as other alternative formulations, a smaller 

number of time steps N is needed. Although SHS is easier to implement than CHS, due to 

the inclusion of more variables, the overall performances of CHS and SHS are similar. 

TR usually performs better than CHS or SHS with respect to the computational efforts for 

various N, because of simpler expressions of constraints and the exclusion of constraints 

or variables at the center of time steps. However since the approximation is not as good 

as those by CHS or SHS, the optimal solution obtained by TR for N = 100 is not as good, 

either. 

Table 8.6 contains comparison of the numbers of iterations and CPU efforts for 

different grid sizes. It shows that as the number of grid points is increased the 

computational effort with all the alternative formulations increases. Although the 

numbers of iterations needed for the alternative formulations are mostly in the range of 

20~40, the CPU/iteration is quite large, and becomes larger as the size of the optimization 

problem increases. However, the CPU effort for the conventional formulation remains 

relatively constant for various N. It is seen that the alternative formulations are more 

efficient and require less CPU effort than the conventional formulation when the number 

of time grid points is smaller (N = 100), except for CHS and SHS. For N = 300, only CD-

1 is more efficient than the conventional formulation, and with N = 500, the conventional 

formulation is the most efficient one among all the formulations. This can be explained 

by the sizes of the formulations. When the number of time grid points becomes large, 

there are much more optimization variables and constraints in the alternative 
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formulations which makes the convergence slower. Also, the number of computations for 

each iteration increases. Apparently, the QP solver for calculation of the search direction 

becomes less efficient as the numbers of variables and constraints increase. Therefore, 

better QP solvers for large sparse problems need to be developed. 

3. Advantages and disadvantages of formulations 

The main advantages of the simultaneous formulations for dynamic systems are 

as follows. (i) The equations of motion for the system need not be integrated explicitly. 

They need to be satisfied only at the final solution point. This has advantage if 

instabilities occur or no solution exists for certain designs in the design space. Also, 

unnecessary simulations of the system are avoided at intermediate designs, where it 

might be difficult to obtain a solution. (ii) Design sensitivity analysis of the systems 

(which is quite tedious and difficult to implement) is not needed since all the problem 

functions are explicit in terms of the variables. (iii) The inclusion of more state variables 

in the formulations simplifies the constraint expressions and computer implementations. 

Some constraints may become linear or simple bounds on the variables, such as the 

constraints on the displacements, velocities and accelerations. The gradients of the linear 

constraints in the simultaneous formulations can be programmed independently and 

calculated only once in the solution process. 

A major disadvantage of the simultaneous formulations is that the optimization 

problem is very large and large-scale sparse NLP methods are needed. Also, since the 

simultaneous formulations include different types of variables, which have different 

orders of magnitudes, scaling of some of the variables is necessary to reduce numerical 

difficulties. 
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4. Scaling of variables 

In most alternative formulations, velocity and acceleration variables are 

normalized by positive numbers. These normalizers are comparable to the velocity and 

acceleration limits. If the generalized displacements have large difference in their orders 

of magnitude, e.g., rotations and translations, some variables, such as the rotations may 

also need to be scaled. This is true for the rotational degrees of freedoms in the example. 

The current scaling option in SNOPT works fine only if a good starting point is provided 

or the problem is not too nonlinear. Efficient automatic scaling procedures need to be 

developed and incorporated into the alternative formulations. 

5. Other formulations 

It is clear that other simultaneous formulations are possible. These are based on 

different discretization techniques of the first or second-order DEs, such as the Runge-

Kutta formula for numerical solution of first order DEs (Enright and Conway 1992; Betts 

1998; Betts and Huffman 1999), and piecewise higher degree polynomial approximations 

of state variables for first order DEs (Herman and Conway 1995). However, these multi-

step methods or higher degree of polynomials may result in significant complexity of 

numerical implementation for the simultaneous formulations, which is not desired. The 

application of these methods for transient dynamic optimization needs further evaluation. 

8.7  Summary 

Simultaneous formulations for optimization of transient dynamic mechanical 

systems were described and evaluated. Different state variables or their parametric 

approximations were treated as optimization variables in the formulations, i.e., 

generalized displacements, velocities and accelerations. Therefore the discretized state 
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equations (DEs), either in the first or second order forms could be treated as equality 

constraints in the optimization process. By introducing more variables into the 

formulations, the forms of the constraints and their derivatives were changed. The 

formulations were implemented with a sparse NLP code for evaluation. The simultaneous 

formulations had more variables and constraints, although the constraints had simpler 

form compared to the conventional formulation. Therefore an optimization algorithm for 

large numbers of variables and constraints was used to solve the problem. The solutions 

for one sample problem were obtained and compared. Based on this work, the following 

conclusions are drawn: 

1. All the proposed alternative formulations obtained optimum solutions for the 

example problem. 

2. Formulations based on Hermite-Simpson discretization of first order DEs 

gave better solutions with the smaller number of time grid points. 

3. Finite difference based methods were easier to implement than those based on 

first order DEs; However, they usually required a larger number of time grid 

points for better solutions. 

4. In terms of CPU times, most alternative SAND formulations outperform the 

conventional formulation for a smaller number of time grid points. 

5. When the problem size is too large, the sparse QP subproblem solver became 

slower to converge, resulting in much more computational effort than the 

conventional formulation. 

6. More efficient solution methods of sparse QP subproblems and parallel 

algorithms for the alternative formulations need to be studied, developed and 
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combined for broader practical applications of these formulations. 
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CHAPTER 9 
DIGITAL HUMAN DYNAMIC MOTION PREDICTION 

 
 
 

9.1  Introduction 

Virtual human modeling and simulation has attracted considerable attention in 

recent years. Predicting a human gait motion is to solve a non-trivial dynamics problem, 

since joint rotations and torque profiles as well as ground reaction forces are all 

unknowns. In reality, humans can walk in an infinite variety of ways; therefore, there is 

no unique solution to the prediction of human gait motion. Several different research 

avenues have been explored in the literature. In the robotics field, a fast solution of the 

dynamics problem is needed to facilitate real-time motion and control. Thus, the basic 

information that needs to be generated is the motion trajectories of various segments and 

the control torques. In the area of biomechanics, more natural and realistic human 

motions with complex musculoskeletal models have been studied and analyzed. Muscle 

tendon force, stress, fatigue, and injury are all active areas of research. 

The motion planning methods in robotics can be broadly categorized into those 

that are based on stability only without optimization of any performance measure, and 

those that use optimization to solve for optimal trajectories and torques. Motion capture, 

zero moment point (ZMP)-based trajectory generation, and inverted pendulum methods 

all belong to the first category. The motion capture approach is experiment-based; the 

motion of a subject is recorded by identifying the marker positions in the Cartesian 

coordinates. Then the joint angle trajectories are generated by using the recorded data and 

inverse kinematics. This approach is limited by the accuracy of the experimental data. 
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Also, the simulated motion is subject-specific. Statistical methods are developed based on 

the pre-established motion database and they do not involve equations of motion 

(Furusho and Masubuchi 1986; Faraway et al. 1999). The ZMP-based trajectory 

generation method enforces the stability of the mechanism in which leg motion of the 

biped and location of the ZMP are pre-planned (Yamaguchi et al. 1999; Nishiwaki and 

Kagami 2002). Upper-body motion is generated to satisfy the ZMP trajectory; however, 

this may result in excessive upper-body motion. The key point of this approach is that the 

dynamics equations are used only to formulate the stability (ZMP) constraint condition 

rather than generation of the entire trajectory directly. Since additional equality 

constraints on gait parameters, such as hip/limb motion or the ZMP trajectory as a 

function of time are imposed, it is recommended to minimize the number of artificial 

constraints used since they may be too restrictive to adapt to changes in the mission 

goals, the anthropometric data, or the environment conditions. The inverted pendulum 

model is often used to solve the walking problem because biped walking can be treated as 

an inverted pendulum. The advantages of this method are its simplicity and fast solvable 

dynamics equations (Park and Kim 1998). However, it also suffers from an inadequate 

dynamics model that cannot generate natural and realistic human motion. 

Optimization-based trajectory generation is aimed at more realistic and natural 

humanoid motion. Many human-featured criteria can be simultaneously considered rather 

than only the stability. For digital human simulations, the objective functions represent 

human performance measures, and optimization methods are used to solve for the 

feasible joint motion profiles that optimize the objective functions and satisfy the 

necessary constraints (Chevallereau and Aoustin 2001; Bessonnet et al. 2002, 2005; 
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Saidouni and Bessonnet 2003). Lo et al. (2002) used quasi-Newton nonlinear 

programming techniques to determine the human motion that minimizes the actuating 

joint torques. The design variables were the control points for the cubic B-spline 

approximation of joint angle profiles. Chevallereau and Aoustin (2001) planned a 

walking and running motion using the Pontryagin Maximum Principle to determine the 

coefficients of a polynomial approximation for profiles of the pelvis translations and joint 

angle rotations. Saidouni and Bessonet (2003) solved for cyclic, symmetric gait motion of 

a nine degree of freedom (DOF) model that moves in the sagittal plane. The control 

points for the B-spline curves along with the time durations for the gait stages are 

optimized to minimize the actuating torque energy. By adopting the time durations as 

design variables both the motion for the single support and for the double support are 

simultaneously optimized. 

Skeletal models are used quite naturally in the robotics area. They have also been 

used in human locomotion modeling due to their relative simplicity and computational 

efficiency (Chevallereau and Aoustin 2001; Bessonnet et al. 2002, 2005; Saidouni and 

Bessonnet 2003). In biomechanics literature, optimization-based methods have been used 

to simulate human motion with complex musculoskeletal models (Yamaguchi and Zajac 

1990; Pandy et al. 1992; Anderson and Pandy 2001). Muscle groups are included in the 

model using Hill-type elements. The examples with musculoskeletal models include an 8 

DOF model by Yamaguchi and Zajac (1990) to restore unassisted natural gait to 

paraplegics and a model with 23 DOF and 54 muscles for normal symmetric walking on 

level ground by Anderson and Pandy (2001). Thelen et al. proposed a muscle control 

algorithm that used a static optimization method with feed-forward and feedback controls 
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to obtain the desired kinematics trajectories of a musculoskeletal model (Thelen et al. 

2003). The resulting simulations matched well with the patterns of body-segmental 

displacements, ground-reaction forces, and muscle activations obtained from 

experiments. The forward dynamics optimization problem with such musculoskeletal 

models is typically posed to minimize the metabolic energy expenditure per unit distance 

traveled. A set of terminal posture constraints are often imposed to ensure repeatability of 

the gait cycle. 

In the current chapter, the Denavit-Hartenberg (DH) method (Denavit and 

Hartenberg 1955) is used for modeling human skeletal links and dynamics. Meanwhile, 

various constraints are imposed to ensure that the optimal motion satisfies maximum joint 

angle limit, no ground penetration, dynamic stability, and foot-point locations. The 

human body dynamics is based on a recursive formulation that can also be used to 

calculate gradients efficiently. The equations of motion (EOMs) are discretized and finite 

dimensional approximation or parametric representation for the joint angles variables are 

defined, converting the simulation problem into a nonlinear programming (NLP) 

problem. Different formulations and discretization techniques are available. These 

techniques include finite difference, and piecewise polynomial and spline interpolations. 

In the current work, explicit integration of the equations of motion is avoided, which is 

very advantageous for large-scale problems. With these formulations, all the optimization 

constraints, i.e., limits on joint angles can be expressed explicitly in terms of the 

optimization variables. Therefore their gradient evaluations become simple. Note that 

digital human motion prediction and simulation is an active and vast area of research and 

this current chapter can by no means present all the relevant materials. Instead the focus 
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of this research is to compare various formulations of optimization-based motion 

prediction and provide clues on how best to formulate the problem for practical 

applications. Some key features of the present work include: (1) three formulations based 

on different discretization methods are evaluated and compared for digital human gait 

simulations, (2) a recursive form of the equations of motion is discretized directly, and no 

EOMs are integrated. The present chapter also uses a more recent SQP algorithm and 

associated software. One numerical example is optimized and its solutions are compared. 

Advantages and disadvantages of the formulations are discussed. 

9.2  Human Motion Modeling 

A skeletal model is used in this study. Human limbs are modeled as a series of 

linkages. The movements are generated by muscle forces, which act on the skeletal bones 

through lever arms thereby generating torques on joints. Before setting up the 

optimization formulations, kinematics and dynamics analyses of the system need to be 

carried out. The DH method and recursive formulation are adopted for kinematics and 

dynamics analyses, respectively (Hollerbach 1980; Toogood 1989). 

9.2.1  The DH method and recursive kinematics 

formulation   

The DH method is an approach for relating the position of a point in one 

coordinate system to another, by using transformation matrices (Denavit and Hartenberg 

1955). In order to obtain a systematic representation of a serial kinematics chain,  

is defined as the vector of d -generalized coordinates, the joint angles. The position 

vector of a point of interest in the Cartesian space can be written in terms of the joint 

dR∈q
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variables as , where ( )qXX = ( )qX  can be obtained from the multiplication of the 44×  

homogeneous transformation matrices  relating coordinate frames i and i-1, 

represented by four parameters 

i
i T1−

iθ , , id iα , and , as shown in Figure 9.1. ia
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Figure 9.1 Joint coordinate systems 
 
 
 
Let us define augmented 14×  vectors  and  using the global Cartesian 

vector  and the local Cartesian vector  as: 

dr0
dr

( )qX dX

( )
⎥
⎦

⎤
⎢
⎣

⎡
=

1
0 qX
rd ;    (9.2.1) ⎥

⎦

⎤
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⎡
=

1
d

d
X

r

where  is the position of the point with respect to the  coordinate system. Using 

these vectors,  can be related to  (i.e., the global Cartesian vector  can be 

expressed in terms of the local Cartesian vector ) as: 

dX thd

dr0
dr ( )qX

dX

( ) ddd rqTr 00 =  (9.2.2) 

where 
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( ) ( ) ( ) ( )dd
dd

i
i

i
d qqq TTTTqT 1

22
1

11
0

1

10 −

=

− ⋅⋅⋅=∏=  (9.2.3) 

According to the above analysis, we can define matrices , , and  as 

recursive position, velocity, and acceleration transformation matrices for the jth joint, 

respectively. Given the link transformation matrix ( ) and the kinematics state of each 

joint variable ( ,  and ), for j =1, d  (i.e., an  degree of freedom chain), we have: 

jA jB jC

jT

jq jq& jq&& d

jjjj TATTTTA 1321 −== L  (9.2.4) 
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∂
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where  and [ ]IA =0 [ ]0CB == 00 . After obtaining all the transformation matrices , 

, and , the global position, velocity, and acceleration of a point in the Cartesian 

coordinates can be calculated as (Xiang et al. 2006) 

jA

jB jC

ddd rAr =0  (9.2.7) 

ddd rBr =&0  (9.2.8) 

ddd rCr =&&0  (9.2.9) 

where  is the local coordinates of the point in the  coordinate system. dr thd

9.2.2  Dynamics (Recursive Lagrangian equations)   

The general form of dynamic equations of motion is derived from the energy 

principle. Based on the recursive kinematics analysis of the previous section, the 
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backward recursion for the dynamic analysis is accomplished by defining transformation 

matrices  and  as follows (Xiang et al. 2006). Given the mass and inertia properties 

of each link, the joint actuation forces/torques, 

D E

iτ , are computed for i =  to 1 using d

i
i

iT
i

i

i
i qq

tr E
A

gD
A

∂
∂

−⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=τ  (9.2.10) 

11 +++= ii
T
iii DTCJD  (9.2.11) 

11 +++= iii
i

ii m ETrE  (9.2.12) 

where ;  = inertia matrix for link i;  = mass of link i; g  = gravity 

vector;  = location of the center of mass of link i in link i frame. tr  and 

[ ]0ED == ++ 11 dd iJ im

i
i r [ ]L ( )TL  

denote the matrix trace and transpose operations, respectively. The first term in the torque 

expression denotes inertia and Coriolis torques; the second term denotes the torque due to 

gravity. Gradients information for all transformation matrices and torques with respect to 

state variables can be also evaluated in a recursive way as shown in Eqs. (9.2.4) to 

(9.2.12). 

9.3  Human Motion Prediction as an Optimization 

Problem  

It has been shown that task-based human motion prediction is in fact a numerical 

optimal control problem (OCP) (Wang et al. 2005). The basic optimal control problem is 

to determine unknown quantities such as joint angles and torques, to achieve certain goals 

(e.g., minimization of a performance measure function) while satisfying all the 

performance requirements or constraints. Although the formulations are applicable to 

various types of human motions, gait motion is considered in this study. 
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9.3.1  Objective function 

A general objective function (performance index PI) for optimal control problem 

is defined as:  

( )( ) ( )dtthTTcJ T  ,,, 0 00 ∫+= qτq    (9.3.1) 

where  is the total time interval considered. Note that the definition of the OCP 

problem contains a wide variety of control problems, such as minimum time, minimum 

control effort, trajectory tracking, and response constraints. The joint angles  and 

torques  are called state variables and control variables in the OCP problem. For digit 

human gait simulation, the objective functions represent human performance measures. 

Various performance measures of digital human have been developed in the literature 

(Pandy et al. 1992; Lo

T

q

τ

 et al. 2002; Saidouni and Bessonnet 2003; Yang et al. 2004; Xiang 

et al. 2006). 

9.3.2  Optimization constraints 

The optimization constraints consist of the equations of motion in Eqs. (9.2.10) - 

(9.2.12), and other time-dependent requirements, as: 

( ) 0qqqτg ≤ , , ,, t&&&    (9.3.2) 

This type of constraints is the so-called dynamic or point-wise constraint, which 

needs to be satisfied at each point of the entire time interval [ ]Tt ,0∈ . The other type of 

constraints are not functions of ; therefore, they can be treated easily in the optimization 

process. These constraints include the initial and final motion constraints. Five treatments 

of the point-wise constraints in Eq. (9.3.2) have been discussed in the literature (Arora 

1999). A reasonable treatment of time-dependent constraints is to impose them at the 

t
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discrete time grid points. In dynamic gait simulations, the time-dependent inequality 

constraints in Eq. (9.3.2) may include the following basic constraints: (1) foot ground 

penetration, (2) foot strike position, (3) ZMP stability condition, (4) joint angle and 

torque limits. 

1. Foot ground penetration 

Foot ground penetration in each phase (controls height of foot points as shown in 

Figure 9.2). For foot points without contact (triangular points in Figure 9.2), it is required 

that ; for foot points with contact condition (circular points in Figure 9.2), the 

condition is , where  is the vertical coordinate of any point on a foot. It is seen 

that the number of foot ground penetration constraints depends on the total number of 

points on the two feet.  

0≥x

0=x x

 
 
 

Single support phase

x

y

z

 
Figure 9.2 Foot ground penetration constraints  

 
 
 
2. Foot strike position 

Foot strike position can be used to determine walking direction and step length. 

As shown in Figure 9.3, the strike coordinates can be imposed as equality constraints.  
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Figure 9.3 Foot strike position constraints  

 
 
 
3. ZMP stability 

The dynamic stability that refers to dynamic equilibrium of all the forces on a 

walking biped, is imposed by restricting the ZMP location within the boundary of foot 

support region (FSR). The ZMP concept dates back thirty-five years and has been re-

examined by recent literature either for clarification or extension (Goswami 1999; 

Vukobratović and Borovac 2004). The ZMP coordinates and stability requirements are: 
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where , , and  are the coordinates of the center of mass for ith link;  is the 

mass,  is the global inertia, and  is the global angular acceleration of the ith link, 

respectively. 

ix iy iz im

iI iθ&&

4. Joint angle and torque limits 

The constraints on the joint angle profiles and torques are 
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UL qqq ≤≤ ;    (9.3.5) UL τττ ≤≤

where and are the lower and upper bounds for the joint displacements and 

torques, respectively. Note that the joint torque limits  and  are sometimes 

difficult to obtain; therefore, a viable way is to treat them as a part of the objective 

function. This constitutes a so-called minimum control effort problem, which has no 

particular difficulty for solution. 

UL qq  , UL ττ  ,

Lτ Uτ 

9.4  Solution Techniques of Optimal Control Problems  

The optimal control problems find the best solution that achieves user-specified 

objective through forward or inverse dynamics combined with optimization. Several 

different ways based on numerical optimization to solve the OCP problem are available, 

namely conventional state variable elimination (forward dynamics) method, direct 

collocation, and differential inclusion (inverse dynamics). Direct collocation and 

differential inclusion do not need the integration of the equations of motion; they are 

regarded as alternative formulations for optimal control in this chapter. 

9.4.1  State variable elimination 

This is the conventional method to solve numerical optimal control problems. 

Forward dynamics starts with initial conditions and known forces and solves for 

unknown joint displacements by numerical integration (Neptune and Hull 1998; Roussel 

et al. 2001; Anderson and Pandy 2001). The process of integrating forces over time 

intervals to obtain walking motions can itself be computationally intensive. Design 

sensitivity analysis is also needed in this formulation, since the joint angle, velocities and 

accelerations are implicit functions of the optimization variables, the joint torques (Pandy 
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et al. 1999; Arora 1992). One way to deal with the computational intensity of forward 

dynamics formulations has been to use massively parallel algorithms and processing 

scheme (Pandy et al. 1999). 

9.4.2  Direct collocation 

This is the simultaneous formulation where both the joint torques and the joint 

profiles are treated as optimization variables. Therefore the equations of motion in Eqs. 

(9.2.10) to (9.2.12) are treated as equality constraints in the formulation. The direct 

collocation approach has been used in other engineering fields (Enright and Conway 

1992; von Stryk and Bulirsch 1992; Betts 1998; Hull 2003; Schulz 2004), and robotic or 

human motion planning (Kaplan and Heegaard 2001). Although there are a large number 

of variables in this formulation, the equations of motion are not required to be satisfied at 

each iteration of the optimization process. They only need to be satisfied at the final 

optimum point of the problem. There are two main advantages of this formulation for 

dynamic systems: (i) the equations of motion for the system need not be integrated 

explicitly, (ii) design sensitivity analysis of the systems is not needed since all the 

problem functions are explicit in terms of the variables. With these formulations, the 

optimization problem becomes large; i.e., the numbers of variables and constraints are 

large. However, the problem functions are quite sparse; i.e., each function depends on 

only a few variables. These sparse properties of the functions can be exploited in the 

optimization process. 

9.4.3  Differential inclusion 

The inverse dynamics method, on the other hand, calculates unknown forces from 

joint displacement histories. The joint displacement histories associated with locomotion 
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are determined using optimization methods (Chevallereau and Aoustin 2001; Bessonnet 

et al. 2002). This is a unique class of alternative formulation, which does not exist in 

optimization of structures subjected to static loads. Two important issues in such inverse 

dynamics frameworks are the human performance criteria and methods for approximating 

the joint trajectories. The work of Lo et al. (2002) provides a thorough description of an 

inverse dynamics framework for predicting human motions, although it deals with human 

motions other than the locomotion. Note that in this formulation, the equations of motion 

in Eqs. (9.2.10) to (9.2.12) are not integrated nor treated as equality constraints; they are 

automatically satisfied in the optimization process. 

9.5  Discretization Techniques of Equations of Motion 

Different discretization techniques for the equations of motion in Eqs. (9.2.10) to 

(9.2.12) are available. The general idea is to transfer the EOMs to an algebraic system of 

equations, the so-called defect equations, which need to be set to zero to enforce the 

EOMs. In the next section, some of these formulations are presented, and they are based 

on finite difference method, and Hermite and B-spline interpolations. 

9.5.1  Central difference (CD) 

This is the perhaps the easiest way to discretize the system of dynamic equations. 

Some common methods include forward, backward difference, and central difference. In 

the central difference method, the joint velocity and acceleration vectors  and q  are 

written explicitly with respect to the joint angle vector q , as follows:: 

q& &&

( ) ,N i
t

t ii
iii 0   ,

2
11 =

∆
−

== −+ qq
qq &&    (9.5.1) 
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( ) ,N i
t

t iii
iii 0   ,

2
2

11 =
∆

+−
== −+ qqq

qq &&&&    (9.5.2) 

where  is the time interval (t∆ NTt /=∆ ). If some of the state variables, such as the joint 

angles , are treated as variables in the optimization formulation, the implicit problem 

becomes explicit. Therefore special design sensitivity analysis procedures are not needed, 

when the direct collocation or inverse dynamic methods are employed. The finite 

difference approximations are used to replace the joint velocities and accelerations in 

terms of the angles. Note that Eqs. (9.5.1) and (9.5.2) are the additional equality 

constraints between the variables.  

q

Note that the quality of the final solution depends on the approximation made 

between the state variables. In this research, the central finite difference method is used to 

approximate the relationship between joint angles, velocities and accelerations. In order 

to have good results, the number of grid points usually needs to be large. However, the 

finite difference approximation is simple and easy to implement. This is the major 

advantage of the formulation. It is clear that other alternative formulations are possible. If 

the joint velocities q  or accelerations  are also treated as variables, it will give choice 

of expressing some constraints, e.g., the equations of motion, in terms of velocities or 

accelerations, to simplify their expressions. This may lead to simpler gradient evaluation 

and computer implementation (Wang and Arora 2005b). 

& q&&

9.5.2  Piecewise Hermite interpolation (Hermite) 

The basic discretization scheme is as follows: the state variables q  are chosen as 

continuous differentiable functions and piecewise defined as cubic polynomials between 

 and , with the EOMs (9.2.10) to (9.2.12) satisfied at  and . For iq 1+iq it 1+it [ ]1, +∈ ii ttt , 
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the approximation of state variables  is: q
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where . The approximation function (9.5.3) of the state variables must 

satisfy the EOMs (9.2.10) - (9.2.12) at the grid point  (i = 0, N). The time dependent 

constraints are satisfied at the grid points. The optimization problem is to determine q , q  

and  to minimize the cost function of Eq. (9.3.1), subject to the discretized inequality 

constraints in Eq. (9.3.2) at the time grid point. Note that at the grid point , 

ii ttt −=∆ +1

it

&

τ

itt =

( ) ( 112
2332

++ ∆−∆−+−
∆

== iiiiiai tt
t

t qqqqqq &&&&&& )    (9.5.5) 

9.5.3  Cubic B-spline interpolation (B-spline) 

Since human motion trajectories are usually very smooth, cubic B-spline 

interpolation can be used. For the optimization problem, the entire time domain is 

discretized by B-spline curves, which are defined by a set of control points  and time 

grid points (knots) t . B-spline is a numerical interpolation method that has many 

important properties, such as continuity, differentiability, and local control (Piegl and 

Tiller 1997). These properties, especially differentiability and local control, make B-

splines competent to represent joint angle trajectories, which require smoothness and 

P
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flexibility. There are a number of ways to define the B-spline basis functions, and it is 

preferred to have an explicit polynomial form rather than in a recursive form. Let 

 be a non-decreasing sequence of real numbers, i.e., 

. The  are called knots, and they are non-decreasingly spaced. A 

cubic B-spline is defined as 

{ nktttT  ..,, , 10= }

10 ,1 , nk- itt ii =≤ + it

( ) ( ) Tt PtNtq
nc

j
jj ≤≤∑=

=
0     ;

0
4,    (9.5.6) 

where the { } , nc jPj 0 , =  are the ( )1+nc  control points, and the ( ){ }tN j 4,  are the cubic 

B-spline basis functions defined on the knot vector (( 1+nk ) knots). In reality each 

segment of the curve is defined by four control points. The kth derivatives of a cubic B-

spine curve can be easily obtained from Eq. (9.5.6), since only the basis functions are 

functions of time. In this formulation, the control point vector  for each DOF is chosen 

as the optimization variables. This formulation is to minimize the objective function in 

Eq. (9.3.1), subject to the inequality constraints in Eq. (9.3.2), as 

P

( ) 0Pτg ≤t,,    (9.5.7) 

9.6  Discussion of Formulations 

Advantages and disadvantages of different formulations are listed in Table 9.1. 

Since the objective and constraint functions are all explicit in terms of the optimization 

variables in the direct collocation or differential inclusion formulations, the gradients of 

functions can be obtained easier than the state variable elimination method. Starting form 

a system of differential equations, approximations in the time domain for the state 

variables are set up and collocation can be enforced on certain time points in the direct 
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collocation formulations. The equations of motion in Eqs. (9.2.10) - (9.2.12) do not need 

to be satisfied exactly at each iteration of the optimization process. They need to be 

satisfied only at the final solution point. This has advantage if instabilities occur or no 

solution exists for DEs for certain points in the design space. Also, unnecessary 

simulations of the system are avoided at intermediate designs, where it might be difficult 

to obtain a solution. The differential inclusion formulation does not need the integration 

of the dynamic equations, either. In these formulations, the system of DEs is directly 

discretized and imbedded into the optimization formulation. However, the error in the 

solution of DEs in state variable elimination formulations can be easily controlled, which 

is not an easy task for the other two formulations. Differential inclusion formulation 

includes fewer variables and needs less storage than direct collocation; therefore it has 

special advantage. Note that differential inclusion formulation is only available in optimal 

control problems; there is no similar formulation in optimal design of systems subjected 

to static loads. 

In terms of the discretization techniques, several different ways can be used: 

direct discretization by finite differences, piece-wise polynomials and splines of various 

orders. Table 9.2 lists the advantages and disadvantages of different discretization 

techniques. For the piece-wise polynomial and spline interpolations, the number of 

variables is usually not very large; therefore, the resulting NLP is not too large. Sparsity 

can be utilized in the formulations, but not necessary. These formulations provide good 

smoothness for the final solution; therefore, they are well suitable for digital human 

motion simulation. However, the drawback of these formulations is that the 

implementation is not straightforward. They are sometimes too restrictive; therefore no 
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solution or no good solution may be obtained for the optimal control problem. The finite 

difference method usually requires large number of grid points ; therefore large-scale 

NLP algorithms with sparse matrix capabilities are required to solve the problems 

efficiently. 

N

 
 
 

Table 9.1 Advantages and disadvantages of different formulations   

Formulations Variables Advantages Disadvantages 

State Variable 
Elimination τ  

1. Small optimization problems. 
2. Equations of motion are satisfied at each 

iteration; intermediate solutions may be 
usable. 

3. Error in the solution of DEs can be 
controlled. 

  

1. Equations of motion must be integrated at 
each iteration, which is expensive. 

2. A good DEs integrator is needed. 
3. Objective or constraints involving  are 

implicit functions of the variables; their 
evaluation requires solution of the 
equations of motion. 

q

4. Design sensitivity analysis must be 
performed, and its implementation is 
tedious. 

5. Dense constraint Jacobian and Hessian 
matrices; difficult to treat large-scale 
problems. 

 

Direct 
Collocation 

τq,  

1. Formulations are explicit in terms of 
variables. 

2. Equations of motion are not integrated at 
each iteration. 

3. Constraint Jacobians and Hessian are 
sparse. 

4. Design sensitivity analysis is not needed. 
5. Constraints on  can be treated 

efficiently. 
τq  and 

1. Numbers of variables and constraints are 
large. 

2. Intermediate solutions may not be usable. 
3. Optimization algorithms for large-scale 

problems must be used. 
4. For efficiency, advantage of sparsity of 

the constraint Jacobians and Hessians 
must be utilized. 

5. Optimization variables sometimes need to 
be normalized. 

 

Differential 
Inclusion 

q  

1. Smaller number of optimization variables. 
2. Formulations are explicit in terms of 

variables. 
3. Equations of motion are not integrated, but 

are satisfied at each iteration. 
4. Intermediate solutions may be usable. 
5. Design sensitivity analysis is not needed. 
6. Constraints on q  can be treated 

efficiently. 

1. Objective or constraints involving  
need evaluation of inverse dynamics. 

τ

2. Implementation sometimes is not 
straightforward. 

 

 
 
 
Table 9.3 shows the approximated numbers of non-zero elements in the gradient 

vector and Jacobian of constraint functions for all the formulations. The following 

symbols are used in the table:  = number of degree of freedoms (DOFs) in the human 

model;  = number of time intervals (number of time grid points = );  = number 

d

N 1+N n
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of control points in a cubic B-spline;  = number of foot ground penetration 

constraints;  = number of foot strike position constraints; 

gN

sN ZN  = number of ZMP 

stability constraints. This approximation in fact provides upper bounds for the numbers of 

non-zero elements in the vectors and matrices. Only the storage of the input information 

for the algorithm, such as the Jacobian matrix, is discussed and compared. 

 
 
 

Table 9.2 Advantages and disadvantages of different discretization techniques  
Formulation Advantages Disadvantages 

Finite 
Difference 

• Very sparse constraint Jacobians and Hessian. 
• Implementation is very straightforward. 
• State or control variable constraints become 

simple bounds in most cases. 
 

• Larger number of variables and 
constraints. 

• Optimization algorithms for large-
scale sparse problems must be used. 

 

Piece-wise 
Polynomial 

Interpolation 

• Good smoothness. 
• Smaller NLP problems. 
• State or control variable constraints become 

simple bounds or linear in most cases 

• The required curve profile may be 
too restrictive. 

• Implementation sometimes is not 
straightforward. 

 

 
 
 

Table 9.3 Numbers of non-zeros in gradient vector and Jacobian for formulations 
Formulation 

Item 
CD Hermite B-spline 

Gradient 
Vector 

Objective 
Function  d(N+3) 2d(N+2) dn 

Foot Ground 
Penetration 
Constraints  

3dNp(N+1) 
 

[dNp(N+3)(N+1)]* 
4dNp(N+1) 

 

[2dNp(N+2)(N+1)] 
4dNp(N+1) 

 

[dnNp(N+1)] 

Foot Strike 
Position 

Constraints  

3dNs(N+1) 
 

[dNs(N+3)(N+1)] 
4dNs(N+1) 

 

[2dNs(N+2)(N+1)] 
4dNs(N+1) 

 

[dnNs(N+1)] 

ZMP Stability 
Constraints  

3dNZ(N+1) 
 

[dNZ(N+3)(N+1)] 
4dNZ(N+1) 

 

[2dNZ(N+2)(N+1)] 
4dNZ(N+1) 

 

[dnNZ(N+1)] 

Jacobian of 
Constraints 

Joint Angle 
Constraints  - - 

4d(N+1) 
 

[d2n(N+1)] 

Total of 1st Order Derivatives 
(Gradient Vector & Jacobian) 

3d(Np+Ns+NZ)(N+1)+ 
d(N+3) 

 

[d(N+3)· 
((Np+Ns+NZ)(N+1)+1)] 

4d(Np+Ns+NZ)(N+1)+ 
2d(N+2) 

 

[2d(N+2)· 
((Np+Ns+NZ)(N+1)+1)] 

4d(Np+Ns+NZ+1)(N+1)+ 
dn 

 

[dn· 
((Np+Ns+NZ+d)(N+1)+1)] 

*The expressions in the brackets give the total number of elements when sparsity is not considered. 
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9.7  Numerical Examples 

All the formulations developed in Section 9.5 are applied to a gait simulation 

example for evaluation. All the formulations are solved using the sparse SQP algorithm 

in SNOPT (Gill et al. 2002). A PC with 3.2 GHz processor and 1.0 GB RAM is used for 

running the programs and recording the relative CPU times. Each solution case of the 

example problem was run several times and the shortest time was recorded. Results of the 

examples are listed and compared. Advantages and disadvantages of the formulations are 

discussed. 

9.7.1  Example 1 – 2-DOF manipulator arm  

A two-link rigid manipulator arm is considered and solved using the formulations 

developed in the previous section. The reason to use this example is to present basic ideas 

and to validate the numerical results, since the solutions of this well-studied example are 

readily available. The two links are considered rigid and the joint coordinates are selected 

as independent generalized coordinates. The manipulator under study consists of two 

links whose lengths are  and  and moments of inertia  and .  and  are the 

relative joint angels that are controlled by the joint actuator torques  

1L 2L 1I 2I 1q 2q

1τ  and 2τ . The 

manipulator is assumed to lie in the horizontal plane, and the gravity effects are neglected 

in writing the equations of motion. The equations of motion for the two-link manipulator 

are given by Dissanayake et al. (1991), Goh et al. (1993), Kota (1996) and Furukawa 

(2002). The parameters of the manipulator are given as 4.021 == LL m, 

kg, and 5.021 == mm 1.021 == II  kg-m2. The upper and lower bounds for control 

torques are  Nm. Two situations are considered in this example. 10±
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1q

2q

1L

2L

Y

XO  
Figure 9.4 Example 1: two-link arm model 

 
 
 

Table 9.4 Example 1-Case 1 

Formulations No. of 
variables 

No. of 
Constraints 

No. of Non-zeros in  
Constraint Jacobian  

No. of 
Iteration 

T  
(s) 

CPU 
(s) 

State Variable 
Elimination 32 +N  4  128 +N  21 0.393 6.72 

CD 94 +N  62 +N  
2416 +N  

[ ]* 36428 2 ++ NN
10 0.392 0.05 

Hermite 116 +N  24 +N  
2032 +N  

[ ] 225624 2 ++ NN
37 0.393 0.57 Direct 

Collocation 

B-spline 322 ++ Nn  102 +N  4420 +N  
[ ] 30202644 2 ++++ nNNnN

22 0.394 0.19 

CD 72 +N  62 +N  
2214 +N  

[ ] 42164 2 ++ NN
15 0.392 0.09 

Hermite 94 +N  24 +N  
1830 +N  

[ ] 184416 2 ++ NN
316 0.393 3.81 Differential 

Inclusion 

B-spline 12 +n  102 +N  4218 +N  
[ 102024 +++ nNNn ] 16 0.394 0.16 

*The expressions in the brackets give the total number of elements when sparsity is not considered. 
 
 
 
Case 1: The OCP is formulated such that the end point of the manipulator is 

desired to move form one location to another in minimum time. Note that the joint 

actuator torques 1τ  and 2τ  must be determined such that the end point moves from a 

position  in the horizontal plane at time ( 2010  , qq ) 0=t  to a point ( )TT qq 21  ,  at time 

.  is the final time that needs to be minimized. The OCP is subjected to the Tt = T
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following initial and final conditions: 0.0 ,0.0 ,0.2 ,0.0 20102010 ==−== qqqq && ; 

0.0 ,0.0 ,0.1 ,0.1 2121 ==−== TTTT qqqq && . where ,  , 10q 20q Tq1  and Tq2  are the initial 

and final values of the joint angles that specify the orientation of the links. The terminal 

velocities are taken as zero. Central difference, Hermite interpolation and B-spline are 

used in this example. The number of variables, constraints and the final minimum time 

are listed in Table 9.4, where  is the number of time intervals considered (  = 20 is 

used for all formulations).  contains the unknown control points, and  is the number 

of control points, respectively. The minimum time is similar to that reported in the 

literature (0.3945 s by Furukawa (2002)).  

N N

P n

 
 
 

Table 9.5 Example 1-Case 2 

Formulations No. of 
variables 

No. of 
Constraints 

No. of Non-zeros in  
Constraint Jacobian  

No. of 
Iteration 

T  
(s) 

CPU  
(s) 

State Variable 
Elimination 32 +N  4+N  12112 2 ++ NN  78 0.405 22.56 

CD 94 +N  62 +N  
2416 +N  

[ ]* 36428 2 ++ NN
15 0.404 0.08 

Hermite 116 +N  24 +N  
2032 +N  

[ ] 225624 2 ++ NN
50 0.405 0.78 Direct 

Collocation 

B-spline 322 ++ Nn  113 +N  4824 +N  
[ ] 33223166 2 ++++ nNNnN

17 0.406 0.16 

CD 72 +N  62 +N  
2214 +N  

[ ] 42164 2 ++ NN
26 0.404 0.14 

Hermite 94 +N  24 +N  
1830 +N  

[ ] 184416 2 ++ NN
150 0.405 2.22 Differential 

Inclusion 

B-spline 12 +n  113 +N  4622 +N  
[ 112236 +++ nNNn ] 18 0.406 0.23 

*The expressions in the brackets give the total number of elements when sparsity is not considered. 
 
 
 
Case 2: Additional point-wise constraints on the state variables are considered, as 

0.00.22 ≤−= qg . The inclusion of point-wise state constraints brings more nonlinear 
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constraints in the state elimination formulation, and more linear constraints in the B-

spline based formulations. However, in others formulations these constraints are simple 

bounds, as shown in Table 9.5. The minimum time is better than that reported in the 

literature (0.424 s by Kota (1996)). 

It is seen that various formulations work for the example problem and similar 

optimal solutions are obtained. It is seen from Tables 9.4 and 9.5 that it generally takes 

more time for the state variable elimination formulation to find the optimal point, since 

repeated integration of the equations of motion is required. Formulations based on direct 

collocation and differential inclusion generally require less CPU effort, since the 

integration of the equations of motion is not needed. Compared to direct collocation 

method, differential inclusion formulation has smaller numbers of variables and non-zero 

elements in constraint Jacobian, which is advantageous for large-scale simulation 

problems. The inclusion of point-wise state constraints, such as the joint displacement 

limits brings more constraints in the state elimination formulation, and more linear 

constraints in the B-spline based formulations. However, it shows no special difficulty for 

others formulations based on direct collocation and differential inclusion. For the 

formulations based on direct collocation and differential inclusion methods, it is seen that 

the problems are quite sparse, with large numbers of zeros in the constraint Jacobian. The 

consideration of matrix sparsity can in general reduce the data storage by an order of 

magnitude. The sparse NLP code works quite well for these formulations, and turns out 

to be the key to solve large-scale problems. In the next section, various differential 

inclusion (inverse dynamics) formulations will be applied to a large-scale human gait 

model. 
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9.7.2  Example 2 – 18-DOF human lower-body gait 

model   

 
 
 

Movable Base
6 DOFs

x

y
zo

7q

8q9q

10q

16q

14q

15q
13q

17q18q

11q12q

1L
2L

3L

4L  
Figure 9.5 Example 2: 18-DOF human lower-body gait model  

 
 
 

Table 9.6 Anthropometric Data of example 2 

Item Pelvis Thigh Shank Foot 
Length (m) 0.0085 0.383 0.395 0.180 
Mass (kg) 33.55 9.70 4.50 2.80 

Inertia  
(kgm2) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4120.000
02890.00
003550.0  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

5116.000
01381.00
004008.0  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2269.000
02269.00
000046.0  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0164.000
00044.00
000128.0  

 
 
 
An 18-DOF three-dimensional digital human lower-body model is considered as 

shown in Figure 9.5. In this model, the hip has 6 global DOFs, including 3 translations 

and 3 rotations. The pelvis has 3 rotational DOFs, and the knee has 1 rotational DOF. The 

ankle is represented by 2 orthogonal rotational joints. The two legs are exactly 

symmetric. The physical data for thigh, shank, and foot are listed in Table 9.6 (Xiang et 

al. 2006). The number of foot ground penetration constraints in this example is 8, which 
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is the total number of points on the two feet. One foot strike position constraint and four 

ZMP stability constraints are used in this study. Note also that since the ground reaction 

forces are not considered in the current formulation, the torques are only due to gravity, 

inertia, and Coriolis effects. 

The total motion time is considered as 2.442 seconds. No special techniques are 

used to find an initial point for the formulations. The starting values for the optimization 

variables are taken as zero. Table 9.7 lists the sizes of the problem for different 

formulations. Table 9.8 gives the numbers of iterations and CPU (s) for different 

formulations.  

9.7.3  Discussion of results 

1. Number of time steps 

It is obvious that the number of time steps used in the numerical solution process 

can affect the performance of the formulations. In general if the step size is large, the size 

of the optimization problems is small. The numbers of iterations and CPU times to find 

an optimal solution are small, and vise versa. If the step size is too small, the sizes of the 

alternative formulations become very large which requires additional calculations and 

computer storage. To evaluate the performance of various formulations, a few different 

grid sizes are tried for the example and various data and results are summarized in Tables 

9.7 and 9.8. The numbers of variables, constraints, elements in Jacobian for different 

formulations are listed Table 9.7. It is seen that for the same number of time steps, there 

are more variables in the formulation based on Hermite interpolation, and more 

constraints in the B-spline formulation. All the three formulations are indeed very sparse, 

with small numbers of non-zero elements in the constraint Jacobian. When the number of 
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time step is larger, the density of the Jacobian matrices (percentage of non-zero elements 

to all) becomes smaller, and vise versa. Note that the formulation based on B-spline 

interpolation is the sparsest one, although the difference among all the formulations is 

small. Table 9.8 shows that as the number of time steps is increased the computational 

effort with all the formulations also increases. It is also observed that the CD and B-

spline formulations require less computational efforts compared to the formulation based 

on Hermite interpolation. For smaller numbers of time steps, the CD formulation is very 

efficient. When the number of time steps becomes larger, CD and B-spline formulations 

require similar computational efforts.   

 
 
 

Table 9.7 Sizes of example 2 

Formulation No. of 
Variables 

No. of 
Constraints 

No. of Non-
zero Elements 

in Jacobian 

Total No. of 
Elements 

in Jacobian 
Density 

N = 12 270 170 9396 45900 20.5 % 
N = 36 702 482 26676 338364 7.9 % CD 
N = 72 1350 950 52596 1282500 4.1 % 
N = 12 504 170 12672 85680 14.8 % 
N = 36 1368 482 36000 659376 5.5 % Hermite 
N = 72 2664 950 70992 2530800 2.8 % 
N = 12 270 404 13374 109080 12.3 % 
N = 36 702 1148 37998 805896 4.7 % B-spline 
N = 72 1350 2264 74934 3056400 2.5 % 

 
 
 

Table 9.8 Numbers of iterations and CPU (s) for different formulations  

Numbers of Iterations CPU (s) No. of Time  
Intervals (N) CD Hermite B-spline CD Hermite B-spline 

12 30 31 43 11 20 28 
36 29 32 37 65 328 246 
72 96 49 51 1398 2047 1503 
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(a) 

 
(b) 

 Figure 9.6 Gait motions of a 18-DOF human lower-body model (a) kinematically 
feasible gait where torques are not considered; (b) torques are considered 

 
 
 
2. Gait simulations 

Figures 9.6 show the lower-body gait simulations. For simplicity of illustration, 

the axis in the walking direction (y) is extended. It is seen that all the constraints 

presented in Section 9.3, including the foot ground penetration and prescribed strike 

locations are all satisfied. Figure (9.6a) shows a kinematically feasible walking motion, 

while (9.6b) illustrates an optimal gait motion with the absolute torque values are 

minimized. Note that since the joint torques are not considered in (9.6a), some motions 
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such as the high kick of the right leg in Fig. (9.6a) are not realistic. Figure (9.6b) shows a 

more realistic gait motion. 

3. Advantages and disadvantages of formulations 

The main advantages of the differential inclusion inverse-dynamics based 

formulations for dynamic systems are summarized as follows: (i) the equations of motion 

for the system need not be integrated explicitly; therefore, unnecessary simulations of the 

system are avoided at intermediate designs; (ii) design sensitivity analysis of the systems 

is not needed since all the problem functions are explicit in terms of the variables. The 

major disadvantage of the formulation based on B-spline interpolation is that some 

constraints are linear instead of simple bounds, such as the joint angle constraints. 

4. Other formulations 

It is clear that other simultaneous formulations are possible. These are based on 

different discretization techniques of the first order or second order EOMs (Betts 1998), 

and piecewise higher degree polynomial approximations of state variables (Herman and 

Conway 1995). However, as discussed in Chapter 8, these multi-step methods or higher 

degree of polynomials may result in significant complexity of numerical implementation 

for the formulations, which is not desired. The application of these methods for digital 

human motion prediction needs further evaluation. 

5. Future research 

Optimization-based gait prediction reveals great insights into real human gait. 

Intuitively, simulation of a natural gait will involve multiple objectives. This is an 

important topic for future consideration in simulation of human gait. A full-size three-

dimensional gait model including human upper body and arm movements will be very 
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useful for understanding of upper body motion. Human running and jumping motions are 

of special interest to certain types of applications, such as sports. Some further research in 

human motion prediction and simulation also includes comparison with other models 

now being used, and the consideration of collision avoidance in the formulations. A 

general framework for collision avoidance of human motions has been recently presented 

(Yang et al. 2006). 

9.8  Summary 

The task-based motion prediction of digital humans was shown to be an optimal 

control problem and therefore could be solved numerically by powerful sparse NLP 

techniques. In order to provide clues on how best to formulate the problem for practical 

applications, various solution techniques for optimization-based optimal control were 

presented and compared. Different discretization techniques were discussed and their 

strength and weakness compared. Based on this work, the following observations are 

made: 

1. The direct collocation and differential inclusion methods did not require 

integration of the equations of motion. All functions of the formulations 

became explicit in terms of the optimization variables. 

2. Differential inclusion formulation is unique in the sense that it is only 

available in optimal control problems. Compared to direct collocation method, 

differential inclusion formulation has special advantage and great potential for 

large-scale digital human motion prediction, because the size of the 

optimization problem is smaller. 

3. Formulations based on central difference and B-spline required less 
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computational efforts compared to the formulation based on Hermite 

interpolation for the same number of time steps. 

4. When the number of time steps becomes larger, CD and B-spline formulations 

require similar computational efforts. The differential inclusion formulation 

based on B-spline is currently being implemented in the virtual human 

environment SANTOSTM (Yang et al. 2006). 

More work is still needed to fully develop nonlinear optimization-based control 

techniques, such as differential inclusion for realistic human motion prediction, with the 

validation of motion tracking data. More justification should be provided for the selection 

of these methods for human motion simulation. The current control torque does not 

include ground reaction forces, so the torque in the stance leg is not real; the ground 

reaction forces need to be included in future work.  
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CHAPTER 10 
CONCLUSIONS AND FUTURE RESEARCH  

 
 
 

10.1  Discussion and Conclusions 

Alternative formulations for optimization of structural and mechanical systems 

subjected to static and dynamic loads based on the concept of simultaneous analysis and 

design (SAND) were studied in this research. As sample application areas, optimal design 

of trusses, frames, and dynamic mechanical system as well as digital human motion 

simulation problems were considered. The major focuses and contributions of this 

research include: (1) review of the formulations presented in diverse fields with the 

objective of possible cross fertilization of ideas that can lead to better formulations and 

solution procedures for optimization of complex systems; (2) comparison and evaluation 

of various SAND formulations for structural optimization; (3) study of the sparse features 

and implementation with various alternative formulations for structural and mechanical 

system optimization; (4) integration of existing simulation software with alternative 

formulations; and (5) extension of the SAND approach originally developed for 

optimization of structures subjected to static loads to broader applications, such as 

transient dynamic response optimization, and simulation and control problems.  

Some alternative SAND formulations for optimal design of trusses and frames 

were presented, analyzed and evaluated. The formulations were implemented using a 

sparse sequential quadratic programming (SQP) algorithm and a commercial structural 

analysis program. For the selected example problems, the alternative formulations 

worked quite well and converged to better optimal solutions than the known solutions in 
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the literature. Advantages and disadvantages of various formulations were discussed. 

Implementation issues of the formulations with the commercial structural analysis 

program were described. A key conclusion is that the alternative formulations were easier 

to implement with the commercial structural analysis programs and had potential for 

practical applications. Other observations based on the present work areas follows: 

1. Alternative formulations that do not require assembly of the structural 

stiffness matrix (i.e., Jacobian matrix of the equilibrium equations in terms of 

displacements) are more attractive than others. 

2. Implementations with the SAND formulations with the existing analysis codes 

is simpler compared to the conventional formulation in the sense that no 

system of equations needs to be solved for gradient evaluations. This is highly 

advantageous for complex applications where the simulation code may be 

using iterative or approximate procedures to solve the governing equations.  

3. Normalization (scaling) of the variables is needed in the alternative 

formulations. More effective automatic scaling procedures need to be 

developed to further improve efficiency of the formulations. 

4. Sparsity of the problem functions must be utilized for efficiency and 

effectiveness of the alternative formulations. 

Simultaneous formulations for optimization of transient dynamic mechanical 

systems were also proposed and evaluated. Similar to the SAND approach used for 

optimization of structures subjected to static loads and the direct collocation/transcription 

method for optimal control, different state variables or their parametric approximations 

were treated as optimization variables in the formulations, i.e., generalized 
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displacements, velocities and accelerations. Therefore the discretized state equations 

(DEs), either in the first or second order forms could be treated as equality constraints in 

the optimization process. By introducing more variables into the formulations, the forms 

of the constraints and their derivatives were changed. The formulations were 

implemented with a sparse NLP code for evaluation. Different time steps were tested. 

The simultaneous formulations had more variables and constraints, although the 

constraints had simpler form compared to the conventional formulation. Therefore an 

optimization algorithm for large numbers of variables and constraints was used to solve 

the problem. The solutions for sample problems were obtained and compared. Based on 

this work, the following conclusions are drawn: 

1. Formulations based on Hermite-Simpson discretization of first order DEs 

gave better solutions with the smaller number of time grid points. 

2. Finite difference based methods were easier to implement than those based on 

first order DEs; However, they usually required a larger number of time grid 

points for better solutions. 

3. In terms of CPU times, most alternative SAND formulations outperform the 

conventional formulation for a smaller number of time grid points. 

4. When the problem size is very large, the sparse QP subproblem solver became 

slower to converge, resulting in much more computational effort than the 

conventional formulation. 

5. More efficient solution methods of sparse QP subproblems and parallel 

algorithms for the alternative formulations need to be studied, developed and 

combined for broader practical applications of these formulations. 
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10.2  Some Future Research Topics  

Further research work and developments worthy of investigation are described as 

follows: 

1. Formulation of framed structure design for practical applications. 

2. Application to problems with frequency constraints. 

3. Application to nonlinear problems. 

4. Application to topological and shape design problems. 

5. Application to other types of structures, such as plates and shells. 

6. Testing of other efficient optimization algorithms, such as augmented 

Lagrangian approaches. 

7. Extension to other fields, including heat transfer, fluid dynamics, magnetics, 

electrical fields, etc. 

8. Application to multidisciplinary design optimization (MDO). 

SAND represents a fundamental shift in the way analysis and design problems are 

currently treated. Further research is suggested to fully study and utilize sparse features of 

the alternative formulations for large and more complex problems. The exploitation of 

the sparsity, decomposition to reduce sizes, efficient solution of sparse QP subproblems, 

and parallel algorithms for the alternative SAND formulations need to be further studied, 

developed and combined for much broader practical applications of these formulations.  
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